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ABSTRACT The linear mixed model (LMM) has become a standard in genetic association studies to account for population
stratification and relatedness in the samples to reduce false positives. Much recent progresses in LMM focused on approximate
computations. Exact methods remained computationally demanding and without theoretical assurance. The computation is
particularly challenging for multiomics studies where tens of thousands of phenotypes are tested for association with millions of
genetic markers. We present IDUL and IDUL† that use iterative dispersion updates to fit LMMs, where IDUL† is a modified
version of IDUL that guarantees likelihood increase between updates. Practically, IDUL and IDUL† produced identical results,
both are markedly more efficient than the state-of-the-art Newton-Raphson method, and in particular, both are highly efficient
for additional phenotypes, making them ideal to study genetic determinants of multiomics phenotypes. Theoretically, the LMM
likelihood is asymptotically unimodal, and therefore the gradient ascent algorithm IDUL† is asymptotically exact. A software
package implementing IDUL and IDUL† for genetic association studies is freely available at https://github.com/haplotype/IDUL.
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Introduction1

Genome-wide association studies (GWAS) play a pivotal role in2

identifying genetic variants associated with diverse traits and3

diseases. A key challenge in these studies is controlling for pop-4

ulation stratification and relatedness in the sample, confounding5

factors, which, if unaddressed, can lead to false-positive asso-6

ciations. To tackle this issue, the linear mixed model (LMM)7

has emerged as the standard analytical approach. Earlier work8

focused on feasibility, as exemplified by TASSEL (Yu et al.9

2006) and EMMA (Kang et al. 2008). Later works focused on10

improving efficiency, as exemplified by EMMAX (Kang et al.11

2010), P3D (Zhang et al. 2010), FaST-LMM (Lippert et al. 2011),12

and GEMMA (Zhou and Stephens 2012). More recent work,13

such as BOLT-LMM (Loh et al. 2015) and fastGWA (Jiang et al.14

2019), aimed to make the computation feasible for large biobank15

datasets. One particular setting that requires high efficiency in16

fitting the linear mixed model is multiomics analysis, where17

tens of thousands of phenotypes are tested for association with18

millions of genetic markers.19

There are two ways to improve efficiency, one is approximate20
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computation. EMMAX and P3D fit LMM under the null and 21

used parameters estimated from the null model for all SNPs 22

without fitting LMM for each SNP. Svishcheva et al. (2012) ap- 23

proximated a SNP-specific weight with a so-called GRAMMAR- 24

Gamma factor that is shared between SNPs, which effectively 25

performed genomic control internally. Since the factor can be 26

computed efficiently, this approach reduces the computation 27

of score test from quadratic to linear (in sample sizes). BOLT- 28

LMM framed the standard LMM in a Bayesian whole genome 29

regression, and used a variational approximation to fit Bayesian 30

linear regressions with Gaussian mixture priors (Loh et al. 2015). 31

REGENIE took a two-step approach: in the first step it fits a 32

whole genome ridge regression to mimic the random effect and 33

produced a set of genomic predictions, which were used in the 34

second step to control for population structure and relatedness 35

in test for association (Mbatchou et al. 2021). FastGWA (Jiang 36

et al. 2019) combined three approximations: one involves fitting 37

the LMM once under the null and using it for all SNPs; the sec- 38

ond adopts the GRAMMAR-Gamma approach in computing 39

score test statistics; and the third uses hard thresholding to make 40

the kinship matrix sparse, which allows fast evaluation of the 41

likelihood function that paves the way for a grid-search method 42

to fit the LMM. All these approximations produced different 43

ranking of test statistics compared to the exact computation and 44

hence a potential power loss (more details below). 45
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Another way to improve efficiency is through algorithmic1

innovation while maintaining exact computation. (Here exact2

means without aforementioned approximations; it is also short3

for asymptotically exact, to be discussed below.) Exact compu-4

tation removes the need to consider which approximate com-5

putation works best for a given dataset (Zhou and Stephens6

2012). In addition, for small cohorts with high levels of related-7

ness, such as Hutterite (Mozaffari et al. 2019) and Framingham8

Heart Study (Kannel et al. 1979), exact computation was recom-9

mended over approximation (Mbatchou et al. 2021). As an exact10

method, FaST-LMM first rotates the genotypes and phenotypes11

according to eigenvectors of the genetic relatedness matrix so12

that the rotated data become uncorrelated, and then optimizes13

a single parameter in the variance component using Brent’s14

method. The rotation reduces computation complexity in opti-15

mization. Another exact method GEMMA also rotates genotypes16

and phenotypes during optimization, but it does so implicitly.17

The innovation of GEMMA is its ability to evaluate the second18

derivatives, so that the Newton-Raphson method can be used19

for optimization, which converges faster than Brent’s method.20

The comparison between FaST-LMM and GEMMA can be found21

in Zhou and Stephens (2012). The Newton-Raphson method22

suffers from inconsistency when the initial values are distant23

from the optimum, to overcome this inconsistency, GEMMA24

starts its optimization iterations with Brent’s method and then25

switches to the Newton-Raphson method.26

In this paper, we present IDUL and IDUL† that use an itera-27

tive dispersion update to fit LMMs in genetic association studies,28

where IDUL† is designed to be a gradient ascent algorithm by29

insisting on a likelihood increase between IDUL updates. We30

demonstrate that IDUL and IDUL† are consistent and much31

more efficient than the state-of-the-art Newton-Raphson method32

in fitting LMMs, and that both are highly efficient for additional33

phenotypes, and thus well suited to study genetic determinants34

of multiomics phenotypes. Most importantly, we show that the35

LMM likelihood is asymptotically unimodal, and consequently36

IDUL†, a gradient ascent algorithm by design, is asymptotically37

exact.38

Materials and Methods39

Data sets40

We used datasets from the Framingham Heart Study (FHS) to41

conduct numerical comparisons between IDUL and the Newton-42

Raphson method. Funded by the National Heart, Lung, and43

Blood Institute (NHLBI), the FHS includes many independent44

three generational pedigrees, nuclear families, trios, duos, and45

singletons (Kannel et al. 1979). We used 5757 samples with whole46

genome sequencing data (in this study a subset of 500, 000 bial-47

lelic common SNPs were selected) through NHLBI’s TOPMed48

program (Taliun et al. 2021) and who also have protein im-49

munoassays obtained through the NHLBI’s Systems Approach50

to Biomarker Research in Cardiovascular Disease (SABRe CVD)51

Initiative (Ho et al. 2018). With 79 phenotypes, this dataset repre-52

sents a mini example of multiomics data. We also used genotype53

data from the 1000 Genomes project (Auton et al. 2015) with sim-54

ulated phenotypes (details in Supplementary) to demonstrate55

the effectiveness of our method for diverse populations.56

The model and the rotation 57

Consider a standard linear mixed model

y = Wa + xβ + Zu + e

u ∼ MVNn(0, τ−1 ηK)

e ∼ MVNn(0, τ−1 In)

(1)

where W contains conventional covariates such as age and sex, 58

including a column of 1, x contains genetic variant(s) to be tested 59

for association, u is the random effect with Z as its loading 60

matrix and genetic relatedness matrix K, which is twice of the 61

kinship, as its covariance (both Z and K are known), MVNn 62

denotes an n-dimensional multivariate normal distribution, In 63

is n-dimensional identity matrix. Denote X = (W, x) and b = 64

(a, β), then Xb is the fixed effect, and we assume X has a full 65

rank c. In genetic association studies, the random effect Zu is 66

a nuisance term that absorbs part of the phenotype y that is 67

attributable to population stratification and relatedness. We aim 68

to find the maximum likelihood estimate (MLE) of η, which is 69

the ratio between two dispersion terms (random effect u and 70

random noise e), and conditioning on η̂ we can test the null 71

hypothesis β = 0. 72

Denote G = ZKZt and its eigen decomposition QDQt (such
that QQt = In) where j-th column of Q is an eigenvector whose
corresponding eigenvalue is the j-th diagonal element of the
diagonal matrix D. Rotate both sides of (1) by multiplying Qt to
get

yQ ∼ MVNn(XQb, τ−1H) (2)

where XQ = QtX, yQ = Qty, and H = ηD + In is a diagonal 73

matrix. Equation (2) is a weighted linear regression and once 74

η is known everything can be computed analytically, including 75

test statistics for association. 76

Likelihood and the derivatives 77

Define projections P0 = XQ(Xt
QH−1XQ)−1Xt

QH−1 and P =

In − P0. Denote Px = H−1P. The marginal log-likelihood func-
tion for η for model 2 is

fml(η) =
n
2

log(
n

2π
)− n

2
− 1

2
log |H| − n

2
log
(

yt
QPxyQ

)
(3)

Because H is diagonal and with reference to Equation (17) in Ap-
pendices, fml(η) can be evaluated efficiently. For log-restricted
likelihood is

fre(η) =
n− c

2
log(

n− c
2π

)− n− c
2
− 1

2
log |H|

− n− c
2

log
(

yt
QPxyQ

)
+

1
2

log |Xt
QXQ|

− 1
2

log |Xt
QH−1XQ|.

(4)

The first and second derivatives of the log-likelihood function
are

f ′ml(η) = −
1
2

tr(H−1D) +
n
2

yt
QPxDPxyQ

yt
QPxyQ

, (5)

f ′′ml(η) =
1
2

tr(H−1DH−1D)

− n
2

(2yt
QPxDPxDPxyQ)(yt

QPxyQ)−
(

yt
QPxDPxyQ

)2

(yt
QPxyQ)2 .

(6)
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Since we work with the rotated system (2), the only matrix
calculus identity needed to derive these is dA−1

dx = −A−1 dA
dx A−1

where matrix A is a function of a scalar x. For log-restricted
likelihood we have

f ′re(η) = −
1
2

tr(PxD) +
n− c

2

yt
QPxDPxyQ

yt
QPxyQ

, (7)

f ′′re(η) =
1
2

tr(PxDPxD)

− n− c
2

(2yt
QPxDPxDPxyQ)(yt

QPxyQ)−
(

yt
QPxDPxyQ

)2

(yt
QPxyQ)2 .

(8)
These likelihood and derivatives are in the same form as those1

in (Zhou and Stephens 2012).2

Evaluation of the first derivatives3

We simplify the directive of likelihood functions using residuals4

from S1 of the IDUL algorithm (in Results).5

Proposition 1. Let r = PyQ, the following hold:

f ′ml(η) =
1

2η

(
tr(H−1)− n

rtH−2r
rtH−1r

)
,

f ′re(η) =
1

2η

(
tr(H−1P)− (n− c)

rtH−2r
rtH−1r

)
.

(9)

Proof of Proposition 1 is deferred to Appdendices. Because6

H is diagonal, evaluation of f ′ml has a complexity of O(n). To7

evaluate f ′re note tr(H−1P) = tr(H)− tr(HP0), while tr(HP0) =8

tr(H−1X(XtH−1X)−1XtH−1) = tr(XtH−2X
XtH−1X ). Since XtH−1X is9

c× c, its inverse has complexity O(c3). Therefore the complexity10

of evaluating f ′re is O(n + nc + c3).11

IDUL update in an analytical form12

To study the theoretical property of IDUL, we derive its analytic13

form by computing η† = γ̂/t̂ + (1− µ̂/t̂ )η in S2 of the IDUL.14

Lemma 2. The update of IDUL for maximum likelihood estimate is

η† = η +
2η2

nV
f ′ml(η), (10)

where V = tr(H−2)/n − tr(H−1)2/n2 > 0 and is bounded, and15

f ′ml(η) is the derivative of the log-likelihood evaluated at η.16

Proof of Lemma 2 is deferred to Appendices. The Tay-
lor expansion of fml at η is fml(η + x) = fml(η) + f ′ml(η)x +
1
2 f ′′ml(ξ)x2, for some ξ ∈ (η − x, η + x). Let x = η† − η, we get

fml(η
†) − fml(η) =

2η2

nV f ′ml
2(η) + 1

2 f ′′ml(ξ)|η
† − η|2. Substitute

η† − η =
2η2

nV f ′ml(η) back in, we have

fml(η
†)− fml(η) =

2η2

nV
f ′ml

2
(η)

(
1 +

1
2

f ′′ml(ξ)
2η2

nV

)
. (11)

When η is near the optimal, we have fml(η
†)− fml(η) > 0 for17

large n by virtue of Equation (13). But when η is not near opti-18

mal, there is no guarantee that the likelihood always increase.19

Thus we modify IDUL to compare likelihood and guarantee20

its increase between updates to obtain the IDUL† algorithm (in21

Results).22

From MLE to REML 23

With maximum likelihood update (10) at hand, we can obtain
REML estimate by substituting S2 in IDUL and R2 in IDUL†

with

η† = η +
2η2

nV
f ′re(η). (12)

Of course, for IDUL† the likelihood in R1 needs to be revised to 24

REML likelihood. 25

Asymptotically locally concave at optimum 26

Finally, we quantify the second derivative of the log-likelihood 27

function to show it is asymptotically locally concave at the local 28

optimum. 29

Theorem 3. Let η be an optimum of log-likelihood function such that
f ′ml(η) = 0, then

f ′′ml(η) =
n

2η2 [−V + ϵn] , (13)

where V = tr(H−2)/n − tr(H−1)2/n2 > 0 and is bounded, and 30

both mean and variance of ϵn decreases linearly O( 1
n ). Thus, f ′′ml(η) < 31

0 asymptotically almost surely. 32

Proofs of Theorem 3 is deferred to Appendices. Owing to the 33

similarity of expression between f ′′re(η) and f ′′ml(η), we believe 34

the following conjecture can be proved by exploring the connec- 35

tions between eigenvalues of H−1P and H−1, evidenced by that 36

H−1PPv = λPv implies H−1Pv = λPv. 37

Corollary 4. Let η be an optimum of REML-likelihood function such
that f ′re(η) = 0, then

f ′′re(η) =
n− c
2η2 [−V + ϵn] , (14)

where V = tr(H−1PH−1P)/(n− c)− tr(H−1P)2/(n− c)2 > 0, 38

and both mean and variance of ϵn decreases linearly O( 1
n ). Thus, 39

f ′′re(η) < 0 asymptotically almost surely. 40

Computing association p-values 41

With maximum likelihood estimate and REML estimate of η, we 42

can compute p-values for association. To test the null hypothesis 43

β = 0, we computed the likelihood ratio test (LRT) p-values 44

using maximum likelihood estimates as suggested by (Yu et al. 45

2006) and Wald test p-values using REML estimates as suggested 46

by (Kang et al. 2008). Both test statics were described in clean 47

detail in Supplementary of (Zhou and Stephens 2012). 48

Results 49

The IDUL algorithm 50

The iterative dispersion update for linear mixed model (IDUL) 51

algorithm follows: 52

S0 Initialize η and specify a desired precision threshold ϵ. 53

S1 For a given η compute H = ηD + In, fit (2) using weighted 54

least squares with weight H−1 to obtain residual r, and 55

compute t̂ = 1
n ∑j r2

j /Diag(H)j. 56

S2 Fit r2 ∼ MVNn(µ + Diag(D)γ, τ−1H2) using weighted 57

least squares with weight H−2 to obtain γ̂ and µ̂, and com- 58

pute η† = γ̂/t̂ + (1− µ̂/t̂ )η. 59

Asymptotically exact fit for linear mixed model 3



S3 If |η† − η| < ϵ, goto S4. Otherwise, update η ← η†, and1

goto S1.2

S4 Finish and output η.3

The intuition for IDUL algorithm resides in Equation (2), which4

states that variance of residual ri is proportion to (ηDi + 1).5

Since computing residual requires η, we have an iterative up-6

date to conditioning on the current η, compute ri, and fit a linear7

model r2
i = γDi + µ to update η by γ̂/µ̂. This update was then8

tweaked according to derivation of analytical update (Appen-9

dices) to the current form. Since the update is mostly informed10

by the different level of dispersion of the residual r, and hence11

the name of the algorithm. IDUL is easy to implement; both12

rotation and iterative updates require only several lines of code13

in R (Appendices).14

Analytic update of the IDUL15

IDUL is equivalent to the following analytical update:

η† = η +
2η2

nV
f ′ml(η), (15)

where V = tr(H−2)/n − tr(H−1)2/n2 is a function of η and
0 < V < 1, and f ′ml(η) is the first derivative of the log-likelihood
and can be computed analytically (Materials and Methods).
Note Equation (15) is derived here to study the analytic proper-
ties of the IDUL algorithm, not meant to replace step S2 in the
algorithm. We make the following observations on update (15).
First, when f ′ml(η) > 0 IDUL increases η, and when f ′ml(η) < 0
IDUL decreases η, until it converges to f ′ml(η) = 0, which is a
local optimum. Second, Taylor expansion of the log-likelihood
at η to get

fml(η
†)− fml(η) =

2η2

nV
f ′ml(η)

2
(

1 +
1
2

f ′′ml(ξ)
2η2

nV

)
.

Although the factor
(

1 + 1
2 f ′′ml(ξ)

2η2

nV

)
is likely to be positive16

(Materials and Methods), there is no guarantee.17

The IDUL† algorithm18

We therefore modify the algorithm and only update η ← η†
19

when the likelihood increases, and if the likelihood decreases,20

we successively halve the step size until the likelihood increases.21

This technique, successive over-relaxation, is often used in itera-22

tive methods (c.f. Zhou and Guan 2019).23

R0 Initialize η and specify a desired precision threshold ϵ.24

R1 With input η, compute H = η†D + I, fit (2) using weighted25

least squares with weight H−1 to obtain residual r, compute26

t̂ = 1
n ∑j r2

j /Diag(H)j and l(η) = −∑j log(Diag(H)j) −27

n log t̂.28

R2 Fit r2 ∼ MVNn(µ + Diag(D)γ, τ−1H2) using weighted29

least squares with weight H−2 to obtain γ̂ and µ̂, and com-30

pute η† = γ̂/t̂ + (1− µ̂/t̂ )η.31

R3 If |η† − η| < ϵ goto R4; otherwise, do R1 with input η† and32

obtain l(η†), and if l(η†) > l(η), update η ← η†, goto R2;33

otherwise update η† ← 1
2 (η

† + η), goto R3.34

R4 Finish and output η.35

The IDUL† algorithm is a gradient ascent algorithm by de- 36

sign. Since the likelihood is bounded and the sequence of the 37

likelihood is non-decreasing, by the standard Monotone Con- 38

vergence Theorem, the IDUL† algorithm must converge to a 39

local optimum η∗ such that f ′ml(η
∗) = 0. IDUL† is also easy to 40

implement in R (Appendices). 41

Asymptotically unimodal 42

At an optimum such that f ′ml(η) = 0, the second derivative can
be simplified to the following form

f ′′ml(η) =
n

2η2 [−V + ϵn] , (16)

where V is defined in (15) and both mean and variance of ϵn 43

vanish linearly (proportional to 1/n) as n increases (details in 44

Materials and Methods). In other words, at the local optimum, 45

f ′′ml(η) < 0 asymptotically almost surely, or with probability 1. 46

This asymptotically local concaveness implies that with a suf- 47

ficiently large sample size, the log-likelihood fml(η) attains its 48

unique global maximum at f ′ml(η) = 0. If to the contrary there 49

are at least two local maxima, then owing to smoothness of the 50

likelihood function Equation (3) and its derivative Equation (5), 51

there must exist a minimum η∗ such that f ′ml(η
∗) = 0 but with 52

f ′′ml(η
∗) > 0, which produces a contradiction. (Intuitively, there 53

must be a valley between two locally concave peaks, and the 54

valley violates local concaveness.) Therefore, the likelihood 55

function is unimodal asymptotically almost surely (or with prob- 56

ability 1). 57

Asymptotically exact 58

The notion that “an iterative method cannot be exact" is false. For 59

example, the Euclidean algorithm, used to find the greatest com- 60

mon divisor between two integers, is an iterative algorithm, and 61

it is exact. Another example is the Banach fixed-point-theorem, 62

which guarantees that, when certain conditions are satisfied, 63

fixed-point iterations always converge to a fixed point, no mat- 64

ter where the iteration starts. A convergence sequence is precise 65

to an arbitrary precision and thus exact. The IDUL† is a gradient 66

ascent algorithm, and if the likelihood is unimodal, then IDUL†
67

updates produce a convergence sequence, and therefore IDUL†
68

is exact. Since the likelihood is asymptotically almost surely 69

unimodal, so IDUL† is asymptotically exact. 70

Connection with Newton-Raphson 71

With a sufficiently large number of samples and η near the opti- 72

mum, ϵn in Equation (16) can be safely ignored. The analytic up- 73

date of the IDUL then becomes η† = η− f ′ml(η)/ f ′′ml(η), which is 74

the Newton-Raphson method. And the IDUL† becomes Newton- 75

Raphson with successive over-relaxation. But IDUL and IDUL†
76

require no computation of the second derivative, which is ex- 77

pensive, and outside the neighborhood of the optimum, where 78

the Newton-Raphson method is known to be numerically unsta- 79

ble (Burden and Faires 2010), IDUL and IDUL† are stable and 80

consistent (below). 81

Consistency of IDUL 82

Since IDUL† is asymptotically exact, it is consistent over differ- 83

ent starting points. We numerically study IDUL’s consistency 84

and compare it with that of the Newton-Raphson method. The 85

datasets we used for comparison are from 5757 related samples 86

and phenotypes are 79 proteins array (more details in Materi- 87

als and Methods). For each phenotype, we fitted LMM using 88
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Figure 1 Consistency of IDUL and Newton-Raphson w.r.t different initial values. IDUL and Newton-Raphson were run on the same
sets of initial values. For each phenotype, four initial values were generated with seeds randomly selected from four segments. So
both IDUL and Newton-Raphson produced 4 columns of estimates each with 79 rows. The pairwise plots of the four columns of
IDUL estimates were in the lower-triangle and colored in red. Those of Newton-Raphson estimates were in the upper-triangle and
in black. The four diagonal plots (in gray) showed consistency or lack of it between IDUL and Newton-Raphson for different set of
initial values. Estimates η̂ were transformed to ĥ = η̂/(1 + η̂) for plotting so that different panels are on the same scale. Points are
jittered slightly by adding random noises for clarity.
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IDUL and Newton-Raphson with the same sets of initial val-1

ues. To generate initial values, we chose four non-overlapping2

segments from the unit interval, namely, V1 = (0.01, 0.25), V2 =3

(0.25, 0.5), V3 = (0.5, 0.75), and V4 = (0.75, 0.99), and for each4

phenotype we drew h0 uniformly from each segments to pro-5

duce initial value η0 = h0/(1− h0).6

It takes IDUL on average 7.3 iterations to converge for each7

combination of phenotype and initial value, compared to 12.58

for Newton-Raphson. We compare the consistency of fitted η̂9

when initial values η0 were drawn from different V segments.10

IDUL had perfect consistency among four sets of initial values11

(Figure 1 lower triangle); Newton-Raphson did not (Figure 112

upper triangle). Taking IDUL estimates as the truth, Newton-13

Raphson made one error when initial values were generated14

from V1, 19 errors from V2, 58 errors from V3, and 70 errors from15

V4 (Figure 1 Diagonal). The erroneous estimates were either16

0 or 1 and the proportion of 1 increases as the initial values17

increase (Figure 1 Diagonal). These observations are consistent18

with Newton-Raphson’s dependence on good initial values and19

that a long near flat likelihood tend to fail Newton-Raphson.20

Similar patterns of inconsistency of Newton-Raphson were also21

observed with phenotypes simulated from diverse populations22

in the 1000 Genomes project (Supplementary Figure S1). To23

overcome the inconsistency, implementing the Newton-Raphson24

method to fit LMM requires multiple runs from different starting25

points. As a comparison, IDUL and IDUL† only need to run26

once for each model fitting, each run takes fewer iterations, and27

each iteration requires less computation.28

Efficiency of IDUL and IDUL†
29

We implemented IDUL and IDUL† into a software package30

IDUL that fits the LMMs and computes test statistics, and31

compared with results from GEMMA, a software package that32

fits LMMs using the Newton-Raphson method primed by the33

Brent’s method. The datasets we used for comparison were de-34

scribed in Materials and Methods. We compared the likelihood35

ratio test (LRT) and the Wald test p-values between different36

methods, where the LRT requires maximum likelihood estimates37

of η and the Wald test requires REML estimates of η (Materials38

and Methods). For both the LRT and the Wald test p-values,39

IDUL, IDUL†, and GEMMA reached almost perfect agreement40

(Supplementary Figures S2 and S3). Since IDUL† is asymptoti-41

cally exact, these results suggested that both IDUL and GEMMA42

are practically exact methods.43

Both IDUL and IDUL† are much more efficient than GEMMA44

(Table 1). For a single phenotype, GEMMA with maximum 11245

threads used about 76.5 minutes for the LRT, compared with46

13.6 to 15.3 minutes of IDUL and IDUL† with either 32 and 6447

threads. So for LRT, IDUL and IDUL† are at least five times48

as efficient as GEMMA. GEMMA with maximum 112 threads49

used 98.9 minutes for Wald test, compared with 13.4 to 15.750

minutes for IDUL and IDUL† with either 32 or 64 threads. So51

for Wald test, IDUL and IDUL† is six or seven times as efficient52

as GEMMA.53

Most remarkably, IDUL and IDUL† are highly efficient for54

additional phenotypes, due to saved cost on genotype rotation55

(see Discussion for more detail). Taking LRT and 64 threads as56

an example, IDUL and IDUL† only spent about one extra minute57

(about 8% of time spent for the first phenotype) to compute like58

ratio test for additional 9 phenotypes, and less than six extra59

minutes (about 40% of time spent for the first phenotype) for60

additional 78 phenotypes. From Table 1 one can extrapolate61

runtime to estimate how long does it take to run 10, 000 pheno- 62

types. If 78 additional phenotypes take 6 extra minutes, then 63

10, 000 additional phenotypes take about 770 extra minutes, less 64

than 13 hours. Similar high efficiency for additional phenotypes 65

was also observed with the Wald test and with 32 threads (Ta- 66

ble 1). Also note that doubling the number of threads used by 67

IDUL/IDUL† resulted in a small improvement in speed for a 68

single phenotype, but a larger improvement with additional 69

phenotypes. The high efficiency for extra phenotypes makes 70

IDUL/IDUL† ideal to study genetic determinants of multiomics 71

phenotypes. 72

LRT Methods Wald

p = 1 10 79 Algo Threads p = 1 10 79

76.5 - - GEMMA 112 98.9 - -

13.6 14.9 19.3 IDUL 64 13.4 16.8 24.5

13.9 14.7 19.2 IDUL† 64 13.9 16.5 24.6

15.3 16.4 23.8 IDUL 32 15.7 18.8 31.9

14.9 15.9 25.2 IDUL† 32 15.1 19.7 33.0

Table 1 Times (minutes) used for IDUL/IDUL† (version 0.81)
and GEMMA (version 0.98.5) to process 1, 10, and 79 pheno-
types. GEMMA used maximum 112 threads and IDUL/IDUL†

used 64 and 32. LRT: likelihood ratio test, which requires max-
imum likelihood estimates of η. Wald: Wald test, which re-
quires REML estimates of η. Taking multiple phenotypes to
analyze one by one was not implemented in GEMMA, and its
wall time for 10 and 79 phenotypes are missing.

Exact vs approximation 73

The IDUL† is an asymptotically exact method. Zhou and 74

Stephens (2012) classified methods into approximate methods 75

and (practically) exact methods and demonstrated that 1) among 76

exact methods available at the time, GEMMA is most efficient, 77

outperforming FaST-LMM, which in turn outperforms EMMA 78

by an order of magnitude; and 2) approximate method such 79

as EMMAX, which uses the parameter estimated under the 80

null to compute test statistics for all SNPs, evidently biased 81

test statistics in some dataset. A recent approximate method, 82

fastGWA by (Jiang et al. 2019), in addition to other approxima- 83

tions, applied hard thresholding on matrix K in Equation (1) to 84

make it sparse and exploited the sparsity in fitting the linear 85

mixed model and computing test statistics. The approximation 86

makes fastGWA capable of analyzing large datasets such as UK 87

Biobank. For multiomics datasets such as that of the Framing- 88

ham Heart Study, however, the hard thresholding approach 89

appears less satisfactory, presumably due to closer relatedness 90

between samples and larger effect sizes in multiomics dataset. 91

Figure 2 shows a comparison of test statistics of nine protein phe- 92

notypes (selected out of 79) between exact computation and hard 93

thresholding approximation. The inconsistency can be rather 94

pronounced for some phenotypes, suggesting potential difficulty 95

with approximate methods in multiomics data for closely related 96

samples such as in the Framingham Heart Study – even ignore 97

distant relatedness will produce pronounced biases. 98
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Figure 2 Comparison between exact and approximate methods. The test statistics are − log10 p-values, with the exact statistics on
x-axis, and the approximate statistics on y-axis. There nine phenotypes of protein assay were chosen from 79 total to demonstrate
the level of inconsistency between exact and approximate methods. The threshold for hard thresholding to generate a sparse matrix
is 0.025.
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Discussion1

In this paper we documented two novel methods IDUL and2

IDUL† to fit linear mixed model in the context of genetic associa-3

tion studies. IDUL†, a modification of IDUL, is a gradient ascent4

algorithm by design. Both IDUL and IDUL† are much more5

efficient than the state-of-the-art Newton-Raphson method. The6

fundamental contribution of the paper, however, is that the log-7

likelihood of the linear mixed model is asymptotically locally8

concave at the optimum (we hypothesized that the same is true9

for REML likelihood, see Materials and Methods). Consequently,10

the likelihood of the standard linear mixed model is asymptoti-11

cally unimodal. Therefore, IDUL†, a gradient ascent algorithm ,12

is asymptotically exact.13

We demonstrated that IDUL and IDUL† are much more effi-14

cient than the Newton-Raphson method in fitting the standard15

LMM. We would like to point out that IDUL and IDUL† are spe-16

cialized algorithms that take advantage of a specific dispersion17

structure only available in limited settings such as the LMMs.18

Newton-Raphson, on the other hand, is a general method that19

can be applied in many settings. In addition, our theoretical anal-20

ysis relies on the assumption of normality of the phenotypes.21

Although the assumption can perhaps be relaxed to having fi-22

nite first and second moments, such as binary phenotypes, it23

is prudent to examine phenotypes and perform quantile nor-24

malization when they show severe departure from normality.25

Lastly, studies have shown that estimating K using selected26

SNPs may increase power by reducing “promixal contamina-27

tion" (Listgarten et al. 2012; Loh et al. 2015). Thus, a scheme such28

as leave-current-chromosome-out (LCCO) may work well with29

IDUL and IDUL†.30

When there are population structures among the samples,31

such as in the simulation studies using 1000 Genomes datasets,32

IDUL and IDUL† updates oscillate like a damping pendulum.33

The algorithms still converge, but the oscillation increases the34

number of iterations from several to several dozen. This oscil-35

lation can be resolved by controlling for leading eigenvectors36

(such as top three PCs). It can also be resolved by making IDUL37

and IDUL† lazy. Specifically, the update η† = γ̂/t̂ has a step size38

that is a fraction (specifically tr(H−1)/n) of the step size of that39

IDUL update η† = γ̂/t̂ + (1− µ̂/t̂ )η. We can take an average of40

the two updates to get η† = γ̂/t̂ + (1− µ̂/t̂ )η/2 (more details41

in Appendices), and this lazy update brings oscillation to a quick42

stop (Supplementary Figure S4).43

In our application, the random effect was treated as a nui-44

sance parameter and our goal is testing fixed effect. Under this45

context, the MLE is preferred over the REML estimate, because46

ML estimate of the fixed effects are unbiased (West et al. 2014).47

REML estimates, however, is preferred when the interest is the48

variance component, such as in estimating trait heritability, be-49

cause it produces unbiased estimate of the variance component50

(i.e, η). IDUL can be adapted to obtain REML estimate based51

on its analytical update (Materials and Methods). The standard52

software package to estimate heritability is GCTA (Yang et al.53

2011), which employs the Average Information REML for model54

fitting (Gilmour et al. 1995). The software behaves well for large55

sample sizes but has trouble dealing with modestly small sam-56

ple sizes such as 3500 (Guan and Levy 2024). On the other hand,57

IDUL works smoothly with 2554 samples from 1000 Genomes58

project and 1477 samples from the Framingham Heart Study.59

In a down-sampling study conducted with 1000 Genomes data,60

IDUL produces consistent results with 300 samples.61

IDUL is designed with genetic association with multiomics62

data in mind, where the same set of genotypes are tested against 63

thousands or tens of thousands phenotypes for association, 64

where rotation of genotype vectors (left multiplying Qt) only 65

needs to be done once for all phenotypes. The existing QTL 66

analysis software packages such as Matrix eQTL (Shabalin 2012) 67

and FastQTL (Ongen et al. 2016) are not LMM-based methods, 68

and have difficulty with closely related samples. IDUL can fill 69

this void. 70

Suppose in a study we have n sample, m SNPs, p phenotypes, 71

and c covariates, then the total complexity is O(n3 + (m + p + 72

c)n2 + tmp(nc2 + c3)), where O(n3) is for eigen decomposition, 73

O((m + p + c)n2) is for rotation, and O(tmp(nc2 + c3)) is for 74

model fitting of all SNP-phenotype pairs, where O(nc2 + c3) 75

is the complexity of linear regression, and we assume IDUL 76

converges on average in t iterations. For a typical study where 77

m > p > n ≫ c, the dominate term in total complexity is 78

O(tmpnc2), which is linear in the size of the study, namely, n, m, 79

and p. IDUL† has the same complexity as IDUL, with a slightly 80

larger equivalent t for extra computation to evaluate likelihood. 81

The Newton-Raphson method also has the same complexity, but 82

it tends to have a much larger equivalent t than IDUL and IDUL†
83

because essentially it needs to run multiple times to compensate 84

for its lack of consistency, each run takes more iterations to 85

converge, and each iteration takes more computation because 86

it requires second derivatives. Table 1 in fact confirmed this 87

intuition. 88

This strategy of reusing intermediate computation of each 89

genetic variant for multiple phenotypes was also a feature in 90

REGENIE (Mbatchou et al. 2021), a whole genome regression 91

(WGR) approximation to the linear mixed model that is com- 92

parable to BOLT-LMM. Compare to WGR, the standard linear 93

mixed model is more flexible in its applications. For example, 94

in testing for parental origin effect and/or controlling for local 95

ancestry, the standard model only needs to add extra variates 96

and covariates, while the rest of the computation remains the 97

same. But WGR has to change model and priors, and perhaps 98

the details on computation, to make it happen. Strictly speaking, 99

WGR is not a standard linear mixed model. For example, the 100

standard linear mixed model can incorporate different estimates 101

of genetic relatedness matrix such as the one estimated by Kin- 102

dred (Guan and Levy 2024), while WGR is stuck with sample 103

correlation as its equivalent genetic relatedness matrix. 104

The O(n3) complexity for eigen decomposition is a primary 105

limiting factor for exact methods, making them impractical for 106

large datasets such as UK Biobank (Sudlow et al. 2015). In order 107

to analyze large datasets, approximate methods such as BOLT- 108

LMM and REGENIE avoided computing eigen decomposition, 109

while fastGWA took advantage of a fast eigen decomposition 110

method for sparse matrices by ignoring distant relatedness. In 111

fact, the complexity of eigen decomposition is smaller than that 112

of the rotation operation, but the rotation operation can be easily 113

helped with parallel computing, while the classical Eigensolvers 114

such as Lanczos Algorithm and Arnoldi Algorithm cannot fully 115

take advantage of parallel computing due to dependence (Dem- 116

mel 1997). But there is a divide-and-conquer algorithm for 117

eigendecomposition that can take advantage of parallel com- 118

putation (Dongarra and Sorensen 1987; Gu and Eisenstat 1994), 119

which in principle can make exact methods applicable to large 120

biobank datasets. The combination of high efficiency of the 121

IDUL algorithm, parallel computing of eigen dcomposition, and 122

broad availability of multicore computing resources, will likely 123

make all approximate methods obsolete. 124
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Data and code availability1

This study analyzed existing datasets from public domain and2

simulated datasets. Data from the 1000 Genomes project can3

be found at https://www.internationalgenome.org/, and datasets4

from Framingham Heart Study can be obtained via dbGaP. The5

software for IDUL and its source code are freely available at6

https://github.com/haplotype/IDUL.7
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Appendices1

R code for IDUL and IDUL†
2

eG=eigen(G); #G=ZKZ^t;3

D=ifelse(eG$values < 0, 0, eG$values);4

xQ=t(eG$vectors) %*% cbind(W, x);5

#rotate covariates W and genotype x;6

yQ=t(eG$vectors) %*% y;7

#rotate phenoytpe y;8

9

idul=function(xQ,yQ,D,eta,epsilon) {10

repeat {11

H = eta * D + 1;12

r2 = lm(yQ~xQ, weights=1/H)$residuals^2;13

tauinv = mean(r2/H);14

fit2 = lm(r2~D, weights=1/H/H);15

mu=fit2$coefficients[1];16

ga=fit2$coefficients[2];17

eta1 = max(0,ga/tauinv+(1-mu/tauinv)*eta);18

print(c(eta,eta1),digits=6);19

if(abs(eta1-eta) < epsilon) {break;}20

eta = eta1;21

};22

return(eta);23

}24

idul_plus=function(xQ,yQ,D,eta,epsilon) {25

H = eta * D + 1;26

r2 = lm(yQ~xQ, weights=1/H)$residuals^2;27

tauinv = mean(r2/H);28

like = -sum(log(H)) - length(D) *log(tauinv);29

repeat {30

fit2 = lm(r2~D, weights=1/H/H);31

mu=fit2$coefficients[1];32

ga=fit2$coefficients[2];33

eta1 = max(0, ga/tauinv+(1-mu/tauinv)*eta);34

while(abs(eta1-eta)>epsilon){35

H1= eta1 * D + 1;36

r2 = lm(yQ~xQ, weights=1/H1)$residuals^2;37

tauinv1 = mean(r2/H1);38

like1 = -sum(log(H1))-length(D)*log(tauinv1);39

if(like1 >= like) {break;}40

eta1 = (eta1+eta)/2;41

}42

print(c(eta,eta1, like, like1));43

if(abs(eta1-eta) < epsilon) {break;}44

eta = eta1; H=H1; like=like1; tauinv=tauinv1;45

};46

return(eta);47

}48

Proof of Proposition 149

Proof. We first simplify two expressions

yt
QPxyQ = rtH−1r

yt
QPxDPxyQ =

1
η
(rtH−1r− rtH−2r)

(17)

1) By PP = P and r = PyQ, we have yt
QPxyQ = yt

QH−1PyQ =

yt
QH−1PPyQ = yt

QPtH−1PyQ = rtH−1r. 2) Recall H =

ηD + In, so D = 1
η (H − In), then by direct computation we

have yt
QPxDPxyQ = yt

QPtH−1DH−1PyQ = rtH−1DH−1r =

1
η rtH−1(H− In)H−1r = 1

η (r
tH−1r− rtH−2r). With these two

reduced expressions, the first derivatives can be transformed as
following:

f ′ml(η) = −
1
2

tr(H−1D) +
n
2

yt
QPxDPxyQ

yt
QPxyQ

= −1
2

1
η

tr(H−1(H− In)) +
n
2

1
η

rtH−1r− rtH−2r
rtH−1r

=
1

2η
(−n + tr(H−1) + n− n

rtH−2r
rtH−1r

)

=
1

2η

(
tr(H−1)− n

rtH−2r
rtH−1r

)
,

(18)

and

f ′re(η) = −
1
2

tr(PxD) +
n− c

2

yt
QPxDPxyQ

yt
QPxyQ

= −1
2

1
η

tr(PtH−1(H− In)) +
n− c

2
1
η

rtH−1r− rtH−2r
rtH−1r

=
1

2η
(tr(P) + tr(H−1P) + (n− c)− (n− c)

rtH−2r
rtH−1r

)

=
1

2η

(
tr(H−1P)− (n− c)

rtH−2r
rtH−1r

)
,

(19)
where the last equality holds because tr(P) = tr(In) − tr(P0) 50

and P0 is a projection with rank c thus tr(P0) = c. 51

52

Proof of Lemma 2 53

Proof. Step 1 is a weighed linear regression, we can compute
r = PyQ. Step 2 is also a weighted linear regression with two
covariates, so that its solution can be directly computed. Let
vector d be the diagonal elements of D and 1 is the vector of 1
and s is component wise square of r, we have

(γ̂, µ̂)t = ((d, 1)tH−2(d, 1))−1(d, 1)tH−2s

=

 dtH−2d dtH−21

1tH−2d 1tH−21

−1

(d, 1)t H−2s

=
1
∆

 1tH−21 −dtH−21

−1tH−2d dtH−2d

(dtH−2s, 1tH−2s
)t

=
1
∆

 1tH−21 · dtH−2s− dtH−21 · 1tH−2s

−1tH−2d · dtH−2s + dtH−2d · 1tH−2s

 .

(20)
Since H and D are diagonal, we have

γ̂ =
1
∆

(
1tH−21 · dtH−2s− dtH−21 · 1tH−2s

)
=

1
∆

(
tr(H−2) · rtDH−2r− tr(DH−2)rtH−2r

)
=

1
∆

1
η

(
tr(H−2) · rt(H− In)H−2r− tr((H− In)H−2)rtH−2r

)
=

1
∆

1
η

rtH−1r
n

(
n tr(H−2)− tr(H−1) n

rtH−2r
rtH−1r

)
,
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and

µ̂ =
1
∆

(
−1tDH−21 · rtDH−2r + 1tD2H−21 · rtH−2r

)
=

1
∆η2

(
−1tH−2(H− I)1 · rt(H− I)H−2r

)
+

1
∆η2

(
1t(H− I)2H−21 · rtH−2r

)
=

1
∆η2

(
−tr(H−1 −H−2) · rt(H−1 −H−2)r

)
+

1
∆η2

(
tr(In − 2H−1 + H−2) · rtH−2r

)
=

1
∆η2

(
−tr(H−1)rtH−1r + nrtH−2r

)
+

+
1

∆η2

(
tr(H−2)rtH−1r− tr(H−1)rtH−2r

)
=

1
∆η2

rtH−1r
n

[
n tr(H−2)− tr(H−1) n

rtH−2r
rtH−1r

]
− 1

∆η2
rtH−1r

n

[
n
(

tr(H−1)− n
rtH−2r
rtH−1r

)]
,

(21)

where

∆ =dtH−2d · 1tH−21− dtH−21 · 1tH−2d

=tr(D2H−2) · tr(H−2)− tr(DH−2)2

=
1
η2

(
tr((H− I)2H−2)tr(H−2)− tr((H− I)H−2)2

)
=

1
η2

(
n tr(H−2)− tr(H−1)2

)
.

(22)

Note t̂ = rtH−1r
n and 2η f ′ml(η) = tr(H−1)− n rtH−2r

rtH−1r , we have

γ̂/t̂ =
1

∆η

(
n2V + tr(H−1)2η f ′ml(η)

)
, (23)

and
µ̂/t̂ =

1
∆η2

(
n2V + [tr(H−1)− n]2η f ′ml(η)

)
. (24)

Putting together and plug in ∆ = n2V
η2 to get

η† = γ̂/t̂ + (1− µ̂/t̂ )η = η +
2η2

nV
f ′ml(η) (25)

Alternatively, note

η† = γ̂/t̂ = η
n tr(H−2)− tr(H−1) n rtH−2r

rtH−1r
n tr(H−2)− tr(H−1)2

= η

[
1 +

tr(H−1)2 − tr(H−1) n rtH−2r
rtH−1r

n tr(H−2)− tr(H−1)2

]

= η +
2η2

n
f ′ml(η)

1
V(H−1)

· tr(H−1)

n

= η +
2η2

nV
f ′ml(η) ·

tr(H−1)

n

(26)

has a fractional step size with fraction being tr(H−1)
n , so that we

can combine updates (26) and (25) to get a lazy update

η† =
1
2
(
γ̂/t̂ + (1− µ̂/t̂ )η

)
+

1
2

γ̂/t̂

= γ̂/t̂ +
1
2
(1− µ̂/t̂ )η

= η +
2η2

nV
f ′ml(η)

1 + tr(H−1)/n
2

.

(27)

Finally, note that H = ηD + In and since η > 0 and Dj > 0
so Hj > 1. Denote hj the j-th diagonal element of H−1, we have

n2V = n tr(H−2)− tr(H−1)tr(H−1)

= ∑
ij

h2
i −∑ hihj

=
1
2

∑
ij
(h2

i + h2
j )−∑

i,j
2hihj


= ∑

i,j
(hi − hj)

2 > 0.

(28)

On the other hand,

V =
1
n

tr(H−2)− 1
n2 tr(H−1)tr(H−1)

<
1
n

tr(H−2)

< 1.

(29)

1

Proof of Theorem 3 2

Proof. We first simplify a long term yt
QPxDPxDPxyQ. Using

D = 1
η (H− In) twice, we get:

yt
QPxDPxDPxyQ

= yt
QH−1PDPxDH−1PyQ

= rtH−1DPxDH−1r

=
1
η2 rtH−1(H− In)Px(H− In)H−1r

=
1
η2

(
rtPxr− rtPxH−1r− rtH−1Pxr + rtH−1PxH−1r

)
=

1
η2

(
rtH−1r− 2rtH−2r + rtH−1PxH−1r

)
,

(30)

where in the last equality, we used rtPxH−1r = rtPtH−1H−1r = 3

rtH−2r. Combing this and 17 and the assumption that f ′ml(η) = 4

0 to get 5

f ′′ml(η) =
1
2

tr(H−1DH−1D)− n
1

yt
QPxDPxDPxyQ

yt
QPxyQ

+
n
2

(yt
QPxDPxyQ)2

(yt
QPxyQ)2

=
1

2η2 tr(H−2(H− In)
2)− n

η2
rtH−1r− 2rtH−2r + rtH−1PxH−1r

rtH−1r

+
n

2η2

(
rtH−1r− rtH−2r

rtH−1r

)2

=
1

2η2 tr(In − 2H−1 + H−2)

+
n

2η2

(
−1 + 2

rtH−2r
rtH−1r

− 2
rtH−1PxH−1r

rtH−1r
+

(
rtH−2r
rtH−1r

)2)

=
1

2η2

(
tr(H−2)− 2n

rtH−3r
rtH−1r

+ n
(

rtH−2r
rtH−1r

)2

+ 2n
rtH−1H−1P0H−1r

rtH−1r

)

− 1
η

f ′ml(η)

=
n

2η2

(
1
n

tr(H−2)− 1
n2 tr(H−1)2

)
+

n
2η2

(
2
(

rtH−2r
rtH−1r

)2

− 2
rtH−3r
rtH−1r

)

+
n

2η2 2
rtH−1H−1P0H−1r

rtH−1r
.

(31)

Asymptotically exact fit for linear mixed model 11



We examine three terms in turn. Denote hj the j-th diagonal
element of H−1, with reference to Equation (28) the first term
can be transformed to

1
n

tr(H−2)− 1
n2 tr(H−1)2

=
1

2n2 ∑
i,j
(hi − hj)

2

=
1

2n2 ∑
ij
(hi − θ + θ − hj)

2

=
1

2n2 ∑
ij
(hi − θ)2 +

1
2n2 ∑

ij
(θ − hj)

2 +
1

n2 ∑
ij
(hi − θ)(hj − θ)

=
1
n ∑

i
(hi − θ)2,

(32)
where θ = 1

n ∑i hi so that 1
n2 ∑ij(hi − θ)(hj − θ) = 0. This is the1

average of the squared errors and we denoted it by V(H−1).2

The second term can be transformed to

2
(

rtH−2r
rtH−1r

)2

− 2
rtH−3r
rtH−1r

= 2

(
rtH−2r · rtH−2r− rtH−3r · rtH−1r

rtH−1r · rtH−1r

)

= 2
∑i,j

(
h2

i h2
j r2

i r2
j − h3

i hjr2
i r2

j

)
∑i,j hihjr2

i r2
j

= 2
∑i,j

(
hihjr2

i r2
j (hihj − h2

i )
)

∑i,j hihjr2
i r2

j

=
∑i,j

(
hihjr2

i r2
j (2hihj − h2

i − h2
j )
)

∑i,j hihjr2
i r2

j

= −
∑i,j(hi − hj)

2s2
i s2

j

∑i,j s2
i s2

j

= −
∑i,j(hi − θ + θ − hj)

2s2
i s2

j

∑i,j s2
i s2

j

= −
∑i,j

[
(hi − θ)2 + (θ − hj)

2 + 2(hi − θ)(θ − hj)
]

s2
i s2

j

∑i,j s2
i s2

j

= −2
∑i(hi − θ)2s2

i

∑i s2
i

+ 2
∑i(hi − θ)s2

i

∑i s2
i

∑j(hj − θ)s2
j

∑j s2
j

,

(33)

where we denote s2
i = r2

i hi. To this end, the term3

−2 ∑i(hi−θ)2s2
i

∑i s2
i

can be seen as a stochastic average of squared4

errors, note s2
i ∼ χ2

1, and s2
i / ∑i s2

i ∼ Beta( 1
2 , n−1

2 ) with mean5

1
n and variance 2(n−1)

n2(n+2) . Therefore, the mean of the term is6

−2V(H−1), and the variance of the term is < 2
n2 ∑i(hi − θ)4 <7

2
n2 ∑i(hi − θ)2 = 2

n V(H−1), which goes to 0 as n increases.8

Identifying the second term as a square of sum of random9

variables, and we apply central limit theorem to show it’s a10

square of a normal random variable whose mean and variance11

both vanish as n increases. Let Zi =
(hi−θ)s2

i
∑i s2

i
= (hi − θ)Bi, where12

Bi ∼ Beta( 1
2 , n−1

2 ), Var(Zi) ≈ (hi − θ)2 2
n2 . Denote Z = ∑i Zi13

and Var(Z) = ∑i Var(Zi) = 2
n V(H−1). We are to apply Lya- 14

punov central limit theorem, so let us check that Lyapunov’s 15

condition holds: E(Zi) = (hi− θ)/n and E[|Zi− (hi− θ)/n|3] = 16

|hi − θ|3E(|Bi − 1
n |3) = |hi − θ|3O( 1

n3 ), so that ∑i E[|Zi − (hi − 17

θ)/n|3] = O( 1
n2 ), and 1

Var(Z) ∑i E[|Zi − (hi − θ)/n|3] = O( 1
n ), 18

which satisfy Lyapunov’s condition. Then by Lyapunov cen- 19

tral limit theorem 1
Var(Z) ∑i(Zi − E(Zi)) → N(0, 1), and equiv- 20

alently Z ∼ N(0, 2
n V(H−1)). Thus, the second term has mean 21

E(Z2) = 2
n V(H−1) = O( 1

n ), and variance (computed via scaled 22

χ2
1) is Var(Z2) = 2( 2

n V(H−1))2 = O( 1
n2 ), which go to 0 as n 23

increases. 24

The third term can be transformed to

2
rtH−1H−1P0H−1r

rtH−1r

= 2n
rt(H−1 − θIn)H−1P0(H−1 − θIn)r

rtH−1r

= 2
rt(H−1 − θIn)H−

1
2 UΛUtH−

1
2 (H−1 − θIn)r

rtH−1r

= 2
∑c

j=1(r
t(H−1 − θIn)H−1/2u·j)2

rtH−1r

= 2
∑c

j=1

(
∑i rih

1/2
i (hi − θ)uij

)2

∑i r2
i hi

= 2
∑c

j=1 w2
j

∑i r2
i hi

< 2F

(34)

where F ∼ χ2
c

χ2
n

. The first equality holds because r = (In − P0)yQ 25

and rtH−1P0v = 0 and vH−1P0rt = 0 for any v (or in other 26

words, we add terms equal to 0); the second equality holds 27

because P2 = H−1/2XQ(Xt
QH−1XQ)−1Xt

QH−1/2 is also a pro- 28

jection, and P2 is symmetric and has the same rank and trace 29

as P0, therefore P2 = UΛUt where U is orthonormal; the third 30

equality holds because Λ has c eigenvalues 1 and n− c eigen- 31

values 0; the fourth equality holds by definition; in the fifth 32

equality, we define wj = ∑i(rih
1/2
i (hi − θ)uij), and because 33

rih
1/2
i is standard normal, wj is a weighted sum of normal ran- 34

dom variables, and itself a normal with mean 0 and variance 35

vj = ∑i(hi − θ)2u2
ij < maxi(hi − θ)2 ∑i u2

ij = maxi(hi − θ)2 < 1, 36

which gives the last inequality. (Note that u·j is an orthonor- 37

mal basis, and ∑i u2
ij = 1.) Finally, F ∼ χ2

c
χ2

n
, and n

c F follows 38

F-distribution with d.f. c and n (c << n), whose mean and 39

variance is O(1), and thus F = O( 1
n ) goes to 0 as n increases. 40

Putting together,

f ′′ml(η) =
n

2η2

[
−V(H−1) + ϵn

]
, (35)

with both mean and variance of ϵn decreases linearly O( 1
n ). 41

Thus, f ′′ml(η) < 0 asymptotically almost surely, or with probabil- 42

ity 1, at where f ′ml(η) = 0. 43
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