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Abstract

Motivation: Estimating the individual inbreeding coefficient and pairwise kinship is an important problem in human
genetics (e.g., in disease mapping) and in animal and plant genetics (e.g., inbreeding design). Existing methods such
as sample correlation-based genetic relationship matrix, KING, and UKin are either biased, or not able to estimate
inbreeding coefficients, or produce a large proportion of negative estimates that are difficult to interpret. This limitation
of existing methods is partly due to failure to explicitly model inbreeding. Since all humans are inbred to various degrees
by virtue of shared ancestries, it is prudent to account for inbreeding when inferring kinship between individuals.

Results: We present “Kindred”, an approach that estimates inbreeding and kinship by modeling latent identity-by-
descent states that accounts for all possible allele sharing – including inbreeding – between two individuals. Kindred
used non-negative least squares method to fit the model, which not only increases computation efficiency compared to
the maximum likelihood method, but also guarantees non-negativity of the kinship estimates. Through simulation, we
demonstrate the high accuracy and non-negativity of kinship estimates by Kindred. By selecting a subset of SNPs that
are similar in allele frequencies across different continental populations, Kindred can accurately estimate kinship between
admixed samples. In addition, we demonstrate that the realized kinship matrix estimated by Kindred is effective in
reducing genomic control values via linear mixed model in genome-wide association studies. Finally, we demonstrate that
Kindred produces sensible heritability estimates on an Australian height dataset.

Availability and implementation: Kindred is implemented in C with multithreading. It takes vcf file or stream as
input and works seamlessly with bcftools. Kindred is freely available at https://github.com/haplotype/kindred.

Introduction

Kinship (denoted by ϕ) between two individuals is the

probability that two alleles sampled at a random locus each

from one individual are identical by descent (IBD). The

inbreeding coefficient (denoted by F ) of an individual is the

probability that two parental alleles sampled at a random

locus in the genome are IBD. Thus inbreeding coefficient of

an individual is the kinship between his or her parents. In

addition, between one and oneself (or between monozygotic

twins) ϕ = (1 + F )/2 (Wright, 1922). Therefore, inbreeding

can be treated as a derived concept of kinship, and a statistical

model designed to estimate kinship automatically applies to

estimating the inbreeding coefficient as well. Kinship estimated

from genotype data is called realized kinship. Due to the

stochastic nature of recombination and gamete segregation,

realized kinship may have significant variation from pedigree

estimates (Visscher et al., 2006). Estimating the individual

inbreeding coefficient and pairwise kinship is an important

problem in human disease mapping, forensics, animal and plant

breeding, and conservation and evolutionary biology (Wang,

2016).

In an effort to study gene IBD, Jacquard (1972) documented

nine IBD states between any two individuals within a pedigree.

These IBD states are partially observable within a pedigree,

and the mean probabilities of each state can be computed

purely based on the pedigree. These IBD states, however,

are completely latent between two individuals not linked by

a known pedigree. Thompson (2013) described connections

between the Jacquard IBD states and Ewen’s sampling

partition in coalescence, and provided the joint distribution of

genotypes between two individuals conditioning on latent gene

IBD states. These formed the basis for our strategy to estimate

kinship by inferring latent IBD states between two individuals

via joint genotype distributions.

Existing methods of kinship estimation, such as KING and

the recent UKin approach (Manichaikul et al., 2010; Jiang

et al., 2022) ignore the possible inbreeding of each sample.

Inbreeding can affect the abundance of homozygous markers in
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the genome; failure to account for inbreeding results not only

in the inability to estimate inbreeding, but also biases kinship

estimates (more in the Discussion). The sample correlation-

based genetic relatedness matrix (scGRM) has been widely

used as the kinship matrix (Price et al., 2006; Yang et al.,

2011; Wang et al., 2017). But it has been shown that scGRM

estimates are biased downward (Weir and Goudet, 2017; Ochoa

and Storey, 2021; Jiang et al., 2022), and this bias is due to

scGRM using sample allele frequency in computation, which

are evidently biased compare to the allele frequencies of the

reference population. Several methods have been developed to

correct for the bias. In particular, Weir and Goudet (2017)

used least related samples to recalibrate the kinship estimates;

Jiang et al. (2022) quantified the bias under an assumption

of no inbreeding and correct the bias. But both approaches

still produce negative estimates for unrelated samples. Ochoa

and Storey (2021) achieved non-negativity by subtracting the

smallest estimates; their method also ignored inbreeding by

only considering locally outbred individuals.

We present Kindred, which estimates kinship and inbreeding

coefficients by inferring the loading probabilities (or weights)

of latent IBD states. A similar approach was implemented

by Milligan (2003) using maximum likelihood, but its

computation was expensive and deemed not practical for

modern GWAS datasets (Zheng et al., 2012). Kindred, on

the other hand, used nonnegative least squares method to fit

the model. This is not only computationally more efficient,

but also enforces non-negativity of kinship estimates. Through

simulations, we demonstrate its high accuracy and non-

negativity in kinship estimates. In addition, by selecting

a subset of SNPs that are similar in allele frequencies

across different populations, we demonstrate that Kindred

accurately estimates kinship between admixed samples. A

major application of the kinship matrix in genome-wide

association studies is the variance-covariance matrix for random

effect in linear mixed models, and we demonstrate that

realized kinship matrix estimated by Kindred is effective

in reducing genomic control values. Another application

of the kinship matrix is to estimate heritability through

variance component models, and we demonstrate that the

realized kinship matrix estimated by Kindred produced a

higher, statistically significant, heritability estimate than other

methods.

Materials and Methods

Latent IBD states model
At an arbitrary marker, there are 15 detailed IBD states

between four alleles of two individuals. If the parental origin

of an allele is not of interest, these 15 states can be reduced

to nine condensed IBD states (Jacquard, 1972; Thompson,

2013). Here we work with the nine condensed identity states

detailed in Table 1. Conditional on each state, the distribution

of joint genotypes for a bi-allelic SNP is given in Table 1. This

distribution is a bi-allelic special case of what is presented

for the four allelic case (Thompson, 2013). Kinship can be

computed from the loading probabilities (or weights), ∆j for

j-th latent IBD state Σj , as follows (Jacquard, 1972):

ϕ = ∆1 +
1

2
(∆3 + ∆5 + ∆7) +

1

4
∆8. (1)

With reference to the diagram in Table 1, all latent states that

have IBD between two samples (yellow segments) contribute to

the kinship calculation in Equation 1. The fractional coefficients

multiplying each loading probabilities in Equation 1 come from

their respective numbers of equivalent and mutually exclusive

IBD states. (Combining equivalent and mutually exclusive

states is how 15 states were condensed to nine.) Inbreeding

coefficients can also be computed from the loading probabilities

of latent IBD states (Jacquard, 1972):

F1 = ∆1 + ∆2 + ∆3 + ∆4,

F2 = ∆1 + ∆2 + ∆5 + ∆6.
(2)

With Table 1, we can model the observed genotype as

emanating from the mixture of the nine latent IBD states to

estimate the loading probabilities (∆’s), and from which to

estimate kinship using Equation (1). We start by considering

a subset of SNPs with allele frequency p so that they share

the same matrix in Table 1. Denote np,1 the count of AA AA,

np,2 the count of AA AB, . . . , and np,9 the count of BB BB

(Table 1), the multinomial likelihood is

(np,1, . . . , np,9) ∼ Multinomial(θp,1, . . . , θp,9),

and the maximum likelihood estimate for θp,1, . . . , θp,9 are

θ̂p,1 = np,1/
∑

np,j , . . . , θ̂p,9 = np,9/
∑

np,j . We can then

model joint genotypes distribution θ̂p as a linear combination

of Σj ’s to seek the least squares fit of a constrained system

argmin
∆

||Sp∆ − θ̂p||2 (3a)

s.t ∆j ≥ 0 for all j, and
∑

∆j = 1 (3b)

where Sp = (Σ1, . . . ,Σ9) is a 9 × 9 matrix detailed in Table 1,

∆ = (∆1, . . . ,∆9) is the vector of loading probabilities, and

|| · ||2 denotes the L2 norm, which is the square root of sum of

squares of all components. From the estimates of the loading

probabilities ∆̂, we can compute the kinship estimate ϕ̂ using

Equation (1). In essence we treat θ̂ as observed and seek a

non-negative least squares fit to obtain ∆̂.

For the i-th SNP with allele frequency pi, we can compute

Spi
and we observe θ̂ = ei, where ei has a single entry equals

1 (depending on the joint genotypes) and the rest 8 entries 0.

We append Spi
’s together to obtain the design matrix S and

append ei’s together to obtain a vector θ̂. For total m SNPs,

S is an 9m× 9 matrix, and θ̂ is an 9m vector, and we seek the

least squares fit of a constrained system

argmin
∆

||S∆ − θ̂||2 (4)

with constraints (3b). The above system generalizes (3a) to

SNPs of arbitrary allele frequencies.

The least square approach has an implicit assumption

of independence between units of observations. When the

independence assumption was violated, such as dependence

among SNPs in our application, the least square approach is

still statistically valid in light of composite likelihood (Varin

et al., 2011). The model can be fit via non-negative least

squares method (Lawson and Hanson, 1974; Bro and De Jong,

1997). The non-negative least squares method respects the

constraints (3b), which guarantee non-negative estimates; while

ordinary least squares method does not. In practice, we find

binning SNPs and re-estimate allele frequencies in each bin

improves performance (Supplementary).
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Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 G1 G2

p p2 p2 p3 p2 p3 p2 p3 p4 AA AA

0 0 pq 2p2q 0 0 0 p2q 2p3q AA AB

0 pq 0 pq2 0 p2q 0 0 p2q2 AA BB

0 0 0 0 pq 2p2q 0 p2q 2p3q AB AA

0 0 0 0 0 0 2pq pq 4p2q2 AB AB

0 0 0 0 pq 2pq2 0 pq2 2pq3 AB BB

0 pq 0 p2q 0 pq2 0 0 p2q2 BB AA

0 0 pq 2pq2 0 0 0 pq2 2pq3 BB AB

q q2 q2 q3 q2 q3 q2 q3 q4 BB BB
Table 1. The diagram above the table shows nine states of IBD sharing between two individuals. These are colored re-rendering of Table

2 in (Jacquard, 1972). Two alleles of individual 1 are colored in blue and two alleles of individual 2 in black. Two alleles IBD within an

individual are connected via a purple segment. Two alleles IBD between individuals are connected by an orange segment. Σ7,Σ8, and Σ9 are

two non-inbreed individuals share two, one, and zero alleles IBD respectively. The table details joint genotype distribution for each latent

IBD states, reproduced from Table 3 of (Thompson, 2013). Each of the nine columns labelled by Σj corresponds to a latent state in the

diagram above. The joint genotypes are listed in columns G1 and G2 where the order matters. p denotes the frequency of A allele and q

frequency of B allele, and p+ q = 1. Note each column labelled by Σj sums to 1. When G1 and G2 are the genotypes of the same individual,

only Σ1 and Σ7 are relevant. When inbreedings are ignored, only last three Σ columns are relevant.

Results

Kinship between non-admixed samples
We simulated related samples with two Han Chinese

populations (CHB and CHS) from 1000 Genomes project (Auton

et al., 2015) as founders. The simulated kinships have a

wide range, including parent offspring, full sibling, first-

degree, second-degree, and third-degree cousins. We selected

1.7 million bi-allelic common SNPs to infer kinship (more

details in Supplementary). Figure 1 compared performance

of different methods (numerical comparisons can be found

in Supplementary Table S1 and S2), and we make following

observations: 1) The classical method scGRM had noticeable

bias in all simulations; 2) popkin (Ochoa and Storey, 2021)

appeared to over-corrected and biased upwards, while UKin

worked well in correcting the bias; 3) KING performed similarly

well with UKin, with UKin performed only slightly better,

presumably because KING was benefited from the large number

of SNPs we used here compared to the simulations in (Jiang

et al., 2022); 4) Kindred and UKin performed similarly

well in mean estimates under the alternatives, with Kindred

produced slightly better results (mean of the inferred kinships

are closest to the theoretical value) in simulations of more

distant relationship (cousins); 5) Kindred had the smallest

variations under the null, which were the majority of the

kinship estimates; 6) Kindred and popkin were the only two

methods that produced non-negative estimates on all kinship

estimates.

Table 1 was obtained using Han Chinese founders from 1000

Genomes project. To investigate whether Kindred performs

similarly well in other founding populations, we conducted

additional simulations using diverse founders. Supplementary

Figure S3, S4, and S5 compared the deviation between inferred

and the truth (instead of the expectation from the pedigree used

in Figure 1) for African, East Asian, and European founders

respectively. Kindred outcompeted other methods, particularly

for harder problems such as kinship between third cousins.

Kinship between admixed samples.
Inferring kinship between admixed samples is a difficult

problem. The difficulty lies in estimating appropriate allele

frequencies. Thornton et al. (2012) solved this problem by

using individual-specific allele frequencies, which are admixture

proportion-weighted ancestral population frequencies. Here we

propose to use a subset of SNPs that have similar allele

frequencies between continental populations. If the continental

population were taken as the homogenous reference population

for IBD for non-admixed samples, then for admixed samples

the reference population for IBD has to be the ancestral

population predates continental population divergence. This

ancestral population can be partially mimicked by selecting

a set of SNPs whose allele frequencies are similar across

different continental populations, which we call SNPs of small

population divergence (SPD). Among 12 million bi-allelic SNPs

with minimum 50 minor allele counts (out of total 2504

diplotypes) in the 1000 Genomes project, there are 1.2 million

SPD SNPs (details in Supplementary), and we used these SNPs

to compute kinship for simulated admixed samples. We also

randomly selected common bi-allelic SNPs of 1.2 million, and

used these to compute kinship for comparison. We simulated

related admixed samples in the same manner as simulating non-

admixed samples, the only difference was to choose founders

from multiple continents. We chose CEU, YRI, CHB, and

CHS as founders to simulate related admixed samples, for

these populations show a small extent of inbreeding and a

low level of pairwise kinships. Figure 2 demonstrates that our
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Fig. 1. Comparison of kinship estimates by different methods. Results of scGRM (dark gray) were obtained with PLINK. Results of popkin (light

gray) were obtained with its R package. Results of UKin (green) were obtained from reimplementation in software Kindred (to take advantage of its

multi-threading capacity). Results of King (blue) were obtained from its software King. Results of Kindread (plum) were obtained from its software

Kindred. Expected kinship based on pedigree and zero values were marked by horizontal lines. For each method we showed two violin plots: under the

alternative (h1) and under the null (h0). The mean was marked by ⋆. Supplementary Table S1 contains numeric comparisons with mean ± sd under h1,

and the percent of negative estimates under h0.

strategy of using SPD SNPs worked well for admixed samples.

While randomly selected SNPs produced kinship estimates

with much larger variation and the results were perhaps only

useful for the first degree relatedness, the selected SPD SNPs

produced kinship estimates that were comparable to estimates

for non-admixed samples.

Genomic control
One important application of kinship estimates is to control for

population stratification and (cryptic) relatedness in genome-

wide association studies, either via controlling for top principal

components (Price et al., 2006), or incorporate kinship into

test statistics (Thornton and McPeek, 2010), or via linear

mixed model (Kang et al., 2010; Zhou and Stephens, 2012;

Chen et al., 2016). The cohorts in the Framingham Heart

Study (FHS), funded by the National Heart, Lung, and
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Fig. 2. Kindred is effective for admixed samples using SNPs of small population divergence (color plum). Kinship estimated using randomly selected

common SNPs (colored in gray) tend to be biased and with large variation. In each panel, theoretical values and zero values were marked by horizontal

lines.

Blood Institute (NHLBI), consists many independent three

generational pedigrees, nuclear families, trios, duos, and

singletons (Kannel et al., 1979). This is a setting in which

linear mixed model is effective in controlling for relatedness

in the samples. We analyzed 5757 samples with whole genome

sequencing data through NHLBI’s TOPMed program (Taliun

et al., 2021) and who also have protein immunoassays obtained

through the NHLBI’s Systems Approach to Biomarker Research

in Cardiovascular Disease (SABRe CVD) Initiative (Ho et al.,

2018). Here we analyzed eight proteins that show substantial

inflated genomic control values λ (Devlin and Roeder, 1999).

In Table 2 we compared different kinship estimates in

their ability to reduce inflation of test statistics due to the

relatedness. All methods are effective in reducing λ to near 1,

suggesting biases in kinship estimates were well tolerated in the

linear mixed model. If measured by deviation from 1, scGRM

and King are tied to be the second best, and popkin, UKin and

Kindred are tied to be the best. Noticeably, Kindred has the

largest mean of λ among all methods and is the only one whose

mean of λ slightly larger than 1.

Heritability of height
Using the height data from (Yang et al., 2010), we estimated

phenotype variation explained (PVE) by different kinship

matrices, where PVE estimates by GCTA were confirmed by

GEMMA. The Kindred kinship matrix produced the highest

PVE estimates (Table 3). To investigate whether the higher

PVE estimates was due to chance or not, we resort to

down-sampling. But for the down sampled datasets GCTA

produced untenable results due to small sample sizes. With

the understanding that Bayesian method performs better with
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λ None scGRM popkin UKin King Kindred

lpa 1.377 0.985 0.994 0.995 0.984 1.017

pon1 1.350 0.978 0.985 0.984 0.975 1.001

MPO 1.287 0.997 0.994 0.996 1.002 1.007

resistin 1.278 0.997 0.998 0.998 1.001 1.011

srage 1.262 0.997 1.000 1.000 1.004 0.999

cd56 1.260 0.988 0.994 0.993 0.993 1.003

cntn1 1.207 0.994 0.999 0.998 0.998 1.002

CD5L 1.190 1.001 1.003 1.003 1.009 1.003

Deviation 0.276 0.008 0.005 0.005 0.008 0.005

Mean 1.276 0.992 0.995 0.995 0.996 1.005
Table 2. Comparison of kinship estimates by their effects on genomic control λ values . The single SNP test (to derive genomic control

values) using linear mixed model was done with GEMMA. The deviation for each column are calculated from mean of (|λ − 1|).

scGRM popkin UKin King Kindred

GCTA
µ 0.449 0.450 0.436 0.376 0.474

σ 0.084 0.077 0.078 0.072 0.085

GEMMA
µ 0.446 0.445 0.426 0.393 0.473

σ 0.084 0.077 0.079 0.071 0.085

Resample 90%
µ 0.455 0.454 0.445 0.410 0.486

σ 0.045 0.033 0.038 0.032 0.041

Resample 70%
µ 0.448 0.473 0.470 0.406 0.500

σ 0.086 0.081 0.086 0.078 0.088

Resample 50%
µ 0.477 0.452 0.486 0.395 0.533

σ 0.151 0.137 0.111 0.126 0.160

Table 3. Mean (µ) and standard deviation (σ) of heritability estimates of height data and its resampling. The top part of the table was

obtained from a single dataset of 3925 samples, where PVE were estimated by GCTA and GEMMA respectively for different kinship estimates;

the bottom part of the table was obtained from the resampling study, where 90%, 70% and 50% of the 3925 samples were sampled without

replacement in each trial. For each percentage, 100 resampling trials were run and PVEs were estimated using our Bayesian MAP estimates,

and mean and standard deviation were computed from the 100 estimates.

small sample sizes, we reframed the linear mixed model

as Bayesian linear regression with a specific prior. Within

this framework, we can estimate PVE by seeking MAP

(maximum a posterior) estimate of a hyperparameter η, which

determines the (relative) size of the random effect (details in

Appendix). Our down-sampling study showed that Kindred

indeed outperformed scGRM (and others) in estimating PVE

of the height data, and the difference over 100 down-sampling

was statistically significant (for 90% resampling rank test P =

4 × 10−6; for 70% resampling rank test P = 4 × 10−5; and

for 50% resampling rank test P = 0.02). In addition to down-

sampling, we masked phenotypes of randomly selected subset of

samples, and used kinship to predict those masked phenotypes,

Kindred performed best in these genomic prediction cross

validation experiments (Supplementary Figure S6). It remains

to be determined whether this gain in PVE can be translated

to power gain in genetic association studies, particularly in

multi-omics phenotypes such as proteomics and gene expression

assay.

Discussion

We developed a latent IBD state model to infer kinship

and inbreeding coefficients. Our method explicitly models

inbreeding when inferring kinships between samples. Kindred

makes use of the non-negative least squares method (Lawson

and Hanson, 1974) for model fitting, so that our kinship

estimates are non-negative, which overcomes difficulties of

producing negative estimates that other methods have. In

order to use least squares method to fit the latent state

model, a unit observation of joint genotypes at a SNP was

expanded as a frequency vector, albeit trivial, with one entry

as 1 (depending on joint genotypes) and other entries as 0.

Compared to a multinomial maximum likelihood approach,

the least squares approach we chose here is efficient in

computation (Supplementary Tables S3 and S4), particularly

with the readily available modern non-negative least squares

method (Bro and De Jong, 1997). The system is rank

deficient, but it can be shown that the quantities of interest,

namely kinship and inbreeding coefficients, are invariant

(Supplementary).

The latent state model can be used as a theoretical

framework to analyze other methods such as scGRM. Let X

and Y denote allele counts of genotypes G1 and G2 in Table 1,

p is allele frequency of A allele, and consider

(X − Y )2

2p(1 − p)
=

(X − 2p)2

2p(1 − p)
+

(Y − 2p)2

2p(1 − p)
− 2

(X − 2p)(Y − 2p)

2p(1 − p)
,

(5)

where Q = (X−2p)(Y −2p)
2p(1−p) is the quantity calculated in scGRM.

The expection of the left hand side in Equation (5) can be

directly computed in light of Table 1, and we get E(LHS) =

4∆2 + ∆3 + 3∆4 + ∆5 + 3∆6 + ∆8 + 2∆9. Identifying the

expectation of the right hand side is 1 + F1 + 1 + F2 − 2Q

and plugging F1 and F2 in Equations (2) to get E(RHS) =

2 + 2∆1 + 2∆2 + ∆3 + ∆4 + ∆5 + ∆6 − 2Q (more details

in Supplementary). Equating the expectations of LHS and

RHS and making use the identity
∑9

j=1 ∆i = 1, to get the

expectation of Q as E(Q) = 2∆1+(∆3+∆5+∆7)+
1
2∆8 = 2ϕ,

as defined in Equation (1).
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A natural question is if scGRM produces unbiased estimates

of kinship according to the latent state model framework,

then why does it have such noticeable bias, particularly

negative estimates for unrelated or distant related samples?

One contributing factor is that the sample allele frequencies

were biased from the reference population. Ochoa and Storey

(2021) attempted to correct the bias by recalibrating based on

the smallest estimates, but our simulations suggested popkin

tends to over-correct. On the other hand, Jiang et al. (2022)

provided an effective way (UKin) to correct the bias, which

dramatically reduced negative estimates for kinship between

unrelated samples. Kindred produced non-negative kinship

estimates even with biased allele frequencies, owning to the

non-negative least squares method used in model fitting. From

above analysis we know Q = (1 + F1 + 1 + F2 − LHS)/2, and

not accounting for inbreeding effectively sets F1 = F2 = 0,

which reduces Q and thus contributes to excessive negative

entries in scGRM. From the perspective of latent state model,

however, not modeling inbreeding is effectively setting loading

probabilities of the first six latent states as zero, and those

excessive allele sharing caused by inbreeding are more likely

to be assigned to latent states Σ7 and Σ8 than Σ9 (Figure 1),

resulting in slight upward bias (the amount of bias were limited

by the kinship between founders). Supplementary Figure S7

demonstrated this intuition via simulations.

The definitions of inbreeding and kinship hinge on IBD,

while IBD is defined relative to a reference population, where

different alleles in that reference population are considered not

IBD (Wang, 2016; Goudet et al., 2018). The defining feature

of a reference population is its marginal allele frequencies.

(Arguably, the best feature of a reference population is

its haplotype frequencies, but that is difficult to obtain

and not easy to work with.) Both scGRM and UKin used

allele frequencies estimated from samples, which implicitly

assumed samples were taken from reference populations and

allele frequencies estimates were unbiased. Both were strong

assumptions. It has been pointed out that one has to take into

account of pedigree or cryptic relatedness to obtain unbiased

estimates of allele frequencies (Sara McPeek et al., 2004). So

an iterative procedure to refine estimates of allele frequencies

and kinship over and over might help to alleviate bias and

negativeness observed in these methods. Kindred allows users

to specify allele frequencies through a tag in VCF files, which

effectively allows users to specify a reference population.

Although mis-specifying a reference population will bias the

kinship (and inbreeding coefficient) estimates, there in fact

has nothing wrong with such a practice if the results were

interpreted accordingly. For example, when using Africans as

reference population, kinship estimates between East Asians

were elevated compared to using East Asian as reference

population. Since African alleles are more diverse than East

Asian alleles, it is only reasonable that East Asians are

modestly “inbred” with reference to the African alleles. In fact,

interesting patterns can emerge in East Asian samples through

the lens of African allele frequencies. Figure 3 showed such an

example when computing kinship using SNPs on chr17. Panel

A upper triangular contain PC plots from Kindred kinship

estimates using African allele frequencies as reference. Panel A

lower triangular using East Asian allele frequencies as reference.

Three distinct clusters (between PC2 and PC3) formed in

the Panel A upper triangular; clusters in the Panel A lower

triangle (between PC6 and PC3) are not distinct. There is no

visible clustering in PCs from scGRM (Panel D lower triangle),

although the coloring (Panel D upper triangle) suggested that

samples in the same cluster in Panel A upper triangle tend to

aggregate in PC3 from scGRM. In other words, using African

alleles as reference to examine kinships between East Asian

samples makes the discovery possible. The clustering was not

caused by population structure in East Asians (Supplementary

Figure S8). To investigate genetics variants that associated with

the clustering, we derived a phenotype that cleanly separate

samples into three clusters as shown in Figure 3B (details

in Supplementary), and performed single SNP test using

BIMBAM (Servin and Stephens, 2007). Interestingly, strong

associations clustered around centromere region (Figure 3C).

We used PC3 of scGRM as a derived phenotype (Figure 3E)

and observed similar association pattern but with much reduced

magnitude in log10 Bayes factors (Figure 3F). A recent study

suggested that haplotype spanning centromere regions may be

introgressed from archaic DNA (Langley et al., 2019), which

renders a plausible explanation to why the clustering in East

Asians is more distinct through the lens of African alleles.

Using a set of SNPs with small population divergence

(SPD) to mimic allele frequencies of the ancestral population,

Kindred can estimate kinship for admixed samples with high

accuracy. (We chose not to use the traditional Fst to the

measure the population divergence out of the consideration

that Fst emphasize pairwise difference, while we wanted similar

allele frequencies in at least three continental populations.) We

recommend SPD SNPs to be used when analyzing samples

with more than one continental origin. Arguably, when

jointly analyzing diverse populations (in addition to analyzing

admixed samples), using the SNPs of small population

divergence is more sensible than all alternatives. We inferred

realized kinship matrices for all 2504 samples in the 1000

Genomes project, using either 1.2 million SPD SNPs or 1.2

million randomly selected common SNPs. Figure 4 compared

their top five PCs. PCs from SPD SNPs still cleanly separates

continental populations, which suggests that although each

individual SNPs are non-informative to ancestry, combined

they are distinctly informative to ancestry. For PCs from

randomly selected common SNPs, a striking feature is that

PC1 was dominated by Africans samples, which have very little

variation in other four leading PCs. This feature appears to be

unique to Kindred.

Appendices

Bayes factor for linear mixed model
Consider a linear model

M1 : y = Wα + e

α ∼ MVN(0, τ
−1

VW )

e ∼ MVNn(0, τ
−1

In)

(6)

where W is a n×w representing w nuisance covariates. Adding

a random effect u we have a new model

M2Z : y = Wα + Zu + e

u ∼ MVNm(0, τ
−1

ηK)
(7)

where Z is n × m matrix presenting the loading, and K is

m×m covariance matrix. Let Q and D be eigen decomposition

such that ZKZt = QDQt, where D = diag(d1, . . . , dn) with

d1 ≥ d2 ≥ · · · ≥ dn and QQt = I. Equations 7 can be rewritten



8 Guan and Levy

Fig. 3. East Asian samples clustering pattern on Chr17. Individuals were assigned colors based on PC2 and PC3 clustering in Panel A, and the same

color assignments were used in Panels A,B,D,E. Panel A: pairwise plot of top six Kindred PCs. The upper triangular plots were PCs of kinship matrix

inferred using African allele frequencies as reference. The lower triangular plots, East Asian allele frequencies as reference. (The diagonals are plots of

j-th PC from one vs j-th PC from the other.) Panel B: phenotypes derived from PC2 and PC3 in upper triangular plots in Panel A. Panel C: Manhattan

plot of single SNP (log10) Bayes factors between common biallelic SNPs on Chr17 and derived phenotypes in Panel B. Panel D: pairwise plots of top

six scGRM PCs. Without coloring, samples form no distinct clusters (lower triangle plots). With coloring (upper triangle), three groups of samples

aggregate. Panel E: derived phenotype from PC3 in Panel D. Panel F: Manhattan plot of single SNP (log10) Bayes factors between common biallelic

SNPs on Chr17 and derived phenotypes in Panel E. Note the y-axis range in Panel F is half of that in Panel C.

as
M2 : y = Wα + Qγ + e

γ ∼ MVNn(0, τ
−1

VQ)
(8)

where VQ = ηD. To see this, E(ZuutZt) = ηZKZt =

ηQDQt = E(QγγtQt).

Since models M1 and M2 are nested, it is understood that

the distribution assumption and prior specification used in

a simpler model carry over to the more complex model. By

specifying a Gamma prior on τ we have normal-inverse-gamma

on a linear model (c.f. Servin and Stephens, Zhou and Guan).

τ ∼ Γ(κ1/2, κ2/2) (9)

It’s clear that from a Bayesian perspective, a linear mixed

model is just a linear model with a specific prior. For M1 after

integrating out α and τ and letting κ1, κ2 → 0, we have

p(y|η) =
(2π)−n/2Γ(n/2)

det(W tW + V −1
W )1/2 det(VW )1/2

·
(

yty − ytW (W tW + V −1
W )−1W ty

2

)−n/2

(10)

Treating M1 as null and M2 as alternative, we compute BF21

in a closed form with the above prior specification. Denote X =

(Q,W ) and V =
(

ηD 0
0 VW

)
, we have

BF (η) =
det(W tW + V −1

W )1/2

det(XtX + V −1)1/2 det(VQ)1/2

·
(

yty − ytX(XtX + V −1)−1Xty

yty − ytW (W tW + V −1
W )−1W ty

)−n/2

.

(11)

Let VW → ∞, we have V −1 =
(

η−1D−1 0
0 0

)
and

BF (η) =
det(W tW )1/2

det(XtX + V −1)1/2 det(VQ)1/2

·
(

yty − ytX(XtX + V −1)−1Xty

yty − ytW (W tW )−1W ty

)−n/2

(12)

Bayesian estimates of PVE.
Bayes factor (12) can be evaluated efficiently for different η.

As XtX + V −1 =
(

In+ 1

ηD
QtW

W tQ W tW

)
, we compute its determinant
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Fig. 4. PC plots of 1000 genomes samples. The upper triangle are pairwise plots of top five PCs inferred with small population divergence (SPD) SNPs.

The lower triangle, randomly selected common (RSC) SNPs. The diagonals are plots of j-th PC from SPD SNPs vs j-th PC from RSC SNPs, with

j = 1, 2, 3, 4, 5. Five continental samples are Africans (in black), Americans (in red), East Asians (in green), Europeans (in blue), and South asians (in

cyan). On diagonal their colors are in gray, plum, light green, light blue, and cyan.

using the identity

det
(
A B
C D

)
= det(A) det(D − CA

−1
B)

to get

det(X
t
X + V

−1
) = det(In +

1

ηD
)

· det(W t
W − W

t
Q(In +

1

ηD
)
−1

Q
t
W );

and its inverse using the identities

(
A B
C D

)−1
=
(

A−1+A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

)
.

Denote F = (In + 1
ηD )−1, M = (W tW − W tQFQtW )−1 to

get

(X
t
X + V

−1
)
−1

=
(

F+FQtWMW tQF −FQtWM

−MW tQF M

)
.

Note these computations only involve inexpensive matrix

multiplying vector, without expensive matrix multiplication
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and matrix inversion. The only expensive calculation is the

eigendecomposition to obtain Q and D, which only needs to be

done once. A R script to compute Bayes factor (Equation 12)

is available in the Supplementary.

With efficient evaluation of BF at hand, we can find η̂

that maximize BF (η) by Nelder-Meade algorithm, and this

is a MAP (maximum a posterior) estimator. With η̂ we can

compute PV E = η̂/(1 + η̂). In Supplementary Figure S9, we

demonstrate two properties of the PVE via simulations: 1)

Bayesian estimates recovered the true PVE; and 2) Bayesian

estimates are consistent with those GCTA estimates.

Supplementary information

Supplementary data are available at Bioinformatics online.
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