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Abstract

We present a novel knockoff construction method, and demonstrate its superior performance in two applications:
identifying proteomic signatures of age and genetic fine mapping. Both applications involve datasets of highly
correlated features, but they differ in the abundance of driver associations. Our primary contribution is the invention
of the reflection knockoff, which is constructed from mirror images – obtained via Householder reflection – of
the original features. The reflection knockoffs substantially outperform Model-X knockoffs in feature selection,
particularly when features are highly correlated. Our secondary contribution is a simple method to aggregate
multiple sets of identically distributed knockoff statistics to improve the consistency of knockoff filters. In the
study of proteomic signatures of age, single feature tests showed overly abundant proteomic association with age.
Knockoff filters using reflection knockoffs and aggregation, however, revealed that a majority of these associations
are hitchhikers instead of drivers. When applied to genetic fine mapping, knockoff filters using reflection knockoffs
and aggregation outperform a state-of-the-art method. We discuss a potentially exciting application of reflection
knockoffs: sharing genetic data without raising concerns about privacy and regulatory violations.
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Introduction

Scientific research often deals with datasets containing stron-

gly correlated features. One example is proteomics data, in

which high correlation can be attributed to several factors

including the inherent correlations among multiple proteins,

protein-protein interactions, and the imperfect specificity of

the assay. Another example is genetic fine mapping, where

single nucleotide polymorphisms (SNPs) in a locus may be

highly correlated due to linkage disequilibrium. For these

types of highly correlated data, identifying features that are

truly associated with a phenotype of interest is a critical but

challenging task. One key difficulty is controlling for false

discovery, i.e., “hitchhikers” that show association through

correlation with genuinely associated “driver” features. The

knockoff filter (Barber and Candès, 2015; Candès et al., 2018)

is a statistical framework designed to address this challenge

by providing a robust way to identify true associations while

controlling the false discovery rate (FDR).

Knockoff filters consist of four components: 1) constru-

cting knockoff features; 2) conducting association analysis

by jointly analyzing the original features and their kno-

ckoffs. The joint analysis can be conducted with either

glmnet (Friedman et al., 2010), which implements penali-

zed regression methods, including LASSO (Tibshirani, 1996)

and Elastic-Net (Zou and Hastie, 2005), or fastBVSR (Zhou

and Guan, 2019), which implements an iterative complex

factorization algorithm to fit Bayesian variable selection

regression (Guan and Stephens, 2011), or with other machine

learning algorithms, including support vector machines (Cor-

tes and Vapnik, 1995) and random forests (Breiman, 2001);

3) computing knockoff statistics W : a vector of differences in

the feature importance measure between the original features

and their knockoffs, where the feature importance measure
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includes the magnitude of regression coefficients (Beta) and

posterior inclusion probability (PIP); and 4) determining the

knockoff threshold from W at a nominal FDR level (e.g.,10%)

to select features.

The most important component of the knockoff filter is

constructing knockoffs X̃ conditioning on the original featu-

res X. This is also the focus of our work. For the knockoffs

to have the desired property of controlling FDR, X and X̃

must follow:

cov
(
[X, X̃]

)
=

[
Σ Σ− S

Σ− S Σ

]
(1)

where S ≥ 0 is a diagonal matrix that satisfies

2S− SΣ
−1

S ≥ 0. (2)

S controls the degree of uncorrelated-ness between Xj and

X̃j , and larger S values bring more power to the knockoff

filter. Another key condition for X̃ is that it must satisfy

that, conditional on X, X̃ is independent of phenotypes of

interest, which is automatically satisfied if the construction

of X̃ is agnostic to the phenotypes.

A critical component in generating both Fixed-X and

Model-X knockoffs is estimating S. Three methods have been

developed to estimate S: 1) The equi-correlated method

where S is a scaling of an identity matrix; 2) The SDP

method where S is obtained by optimizing a natural obje-

ctive function subject to the inherent constraint using a

semidefinite program (SDP) (Barber and Candès, 2015);

and 3) A two-stage method where the first stage produces

an SDP-estimate of S, but using an approximated feature

covariance matrix, and the second stage linearly scales the

SDP-estimated S (Candès et al., 2018). The SDP estimated

S is more powerful than S estimated using the other two

methods.

In this paper, we introduce a novel method to estimate

S by first constructing mirror images Y of the original fea-

ture matrix X via Householder reflection. The difference,

Z = 1
2 (X −Y), is orthogonal to X and thus T = cov(X,Z)

is a diagonal matrix, where cov(X,Z) denotes a sample

covariance matrix with Tjk = cov(Xj ,Zk) denoting sam-

ple covariance between two column vectors Xj and Zk. We

define S = αT, and estimate the scalar α̂ by examining

the largest eigenvalues of the scaled Z. Such S = α̂T leads

to more powerful knockoffs. We call the knockoffs constru-

cted via Householder reflection reflection knockoffs (ReKo).

Since its optimality comes from the leading eigenvalue and

its computation does not require optimization, ReKo is

numerically stable.

Due to the inherent randomness in constructing kno-

ckoffs, the knockoff filter may produce inconsistent results

when applied to different copies of knockoffs. A second con-

tribution of the paper is a simple method we propose to

aggregate multiple sets of identically distributed knockoff

statistics: pooling multiple knockoff statistics to determine

the knockoff threshold and selecting features by comparing

the average knockoff statistics with the knockoff threshold.

This aggregation method produces more consistent results in

real data analysis.

We apply reflection knockoffs and aggregate multiple sets

of knockoff statistics to study two outstanding problems

in genetics and proteomics, where the complex patterns of

high correlation among features pose a challenge for exi-

sting methods. In the study of the proteomics signature of

age, proteomic features appear to be overly abundant in

association with age. Our study using reflection knockoffs

revealed that the majority of single-feature associations obse-

rved between proteomic features and age are hitchhikers.

In genetic fine mapping, linkage disequilibrium between

nearby genetic variants makes it difficult to distinguish dri-

ver signals from hitchhikers. We demonstrate that reflection

knockoffs significantly improve the power of knockoff filters

for identifying driver variants.

Materials and Methods

Reflection
We have the following lemma regarding Householder refle-

ction (c.f. Golub and Van Loan, 2013) and some useful

properties for constructing knockoffs.

Lemma 1. Suppose the data matrix X is n × p with

n > p and X is column-centered, scaled, and has full

rank p. Denote Pj = X,−j(X
t
,−jX,−j)

−1Xt
,−j where X,−j

is matrix X with j-th column removed. Compute Y such

that its j-th column is a Householder reflection of Xj with

respect to Pj, Yj = (2Pj − I)Xj. Define Z = 1
2 (X − Y).

Denote cov(Xj ,Yk) as sample covariance between vector

Xj and Yk. Then the following hold:

a) cov(Yj ,Xk) = cov(Xj ,Xk) for all j ̸= k and j, k ∈
(1, 2, . . . , p).

b) cov(Yj ,Xj) < var(Xj) for all j ∈ (1, 2, . . . , p).

c) Let T be a matrix such that Tjk = cov(Xj ,Zk), then

Tjk = 0 for all j ̸= k and Tjj = cov(Zj ,Zj) > 0 for all

j.

d) X(XtX)−1XtY = Y and X(XtX)−1XtZ = Z.

Proof a) The projection matrix Pj projects Xj onto the

column space of X,−j . Since (I−Pj)Xj is orthogonal to Xk

for k ̸= j, we have cov((I − Pj)Xj ,Xk) = 0. This implies

cov(PjXj ,Xk) = cov(Xj ,Xk). Now Yj = (2Pj − I)Xj ,

and direct computation gives: cov(Yj ,Xk) = cov((2Pj −
I)Xj ,Xk) = 2cov(PjXj ,Xk) − cov(Xj ,Xk). Substituting

cov(PjXj ,Xk) = cov(Xj ,Xk), we obtain cov(Yj ,Xk) =

cov(Xj ,Xk), proving (a).

b) The projection of Xj onto the space spanned by X,−j

as XV = PjXj , and the orthogonal component as X⊥ = (I−
Pj)Xj . Thus, Xj = XV + X⊥. The Householder reflection

Yj can then be written as Yj = XV − X⊥. The sample

covariance between Yj and Xj is given by cov(Yj ,Xj) =

cov(XV −X⊥,XV + X⊥) = cov(XV,XV) − cov(X⊥,X⊥).

That is, cov(Yj ,Xj) = var(XV)−var(X⊥). Since var(Xj) =

var(XV)+var(X⊥), it follows that: cov(Yj ,Xj) = var(Xj)−
2var(X⊥). Since var(X⊥) ≥ 0 with equality holds only if

X⊥ = 0, which would violate the assumption that matrix X

has full rank. Hence, cov(Yj ,Xj) < var(Xj), proving (b).
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c) Statement c) follows directly from a) and b). Speci-

fically, for any j, 4var(Zj) = cov(Xj − Yj ,Xj − Yj) =

cov(Xj) + cov(Yj) − 2cov(Xj ,Yj) = 2 − 2cov(Xj ,Xj −
2Zj) = 4cov(Xj ,Zj) = 4Tjj . From (b) cov(Xj ,Yj) <

var(Xj), ensuring T = cov(X,Z) > 0.

d) From (a), Yj = (2Pj − I)Xj , where Pj projects

Xj onto the column space of X,−j . Thus, Yj is a linear

combination of columns of X. Consequently, Y lies in the

column space of X. Similarly, Z = 1
2 (X − Y) also lies in

the column space of X. Therefore: X(XtX)−1XtY = Y and

X(XtX)−1XtZ = Z. □

Construct knockoffs based on reflection
Following Equation (2.2) of (Barber and Candès, 2015) and

Section 3.1.1 of (Candès et al., 2018), the mean b and cova-

riance CtC of a knockoff X̃ conditional on X are given

by

b = X(I− Σ
−1

S)

C
t
C = 2S− SΣ

−1
S.

(3)

Let S = αT for α ∈ (0, 1]. Straightforward calculations

using the identities in Lemma 1 parts (c) and (d) yields:

b = X− αZ

C
t
C = 2αT− α

2
cov(Z).

(4)

To ensure CtC ≥ 0, we need to determine α̂ such that

this condition holds. Noting that T is positive definite and

diagonal, we can rewrite:

C
t
C = T

1/2
[
2αI− α

2
cov(ZT

−1/2
)
]
T

1/2
. (5)

Let QΛQt be the eigendecomposition of cov(ZT−1/2).

Substituting this, we obtain

C
t
C = T

1/2
Q

[
2αI− α

2
Λ
]
Q

t
T

1/2
. (6)

For CtC to be positive semi-definite, it is sufficient to

have

B
2
(α) ≜ 2αI− α

2
Λ > 0. (7)

Therefore it’s sufficient to have α ≤ 2/Λ1, where Λ1 is the

leading eigenvalue of cov(ZT−1/2). Since Λ1 is positive and

finite, and α ∈ (0, 1], the optimal α̂ exists. This ensures

CtC is positive semi-definite, with C = B(α̂)QtT1/2. Con-

sequently, S = α̂T ≤ 2 cov(X), as guaranteed by the Schur

complement condition.

We thus construct the knockoff as

X̃ = X− α̂Z + UB(α̂)Q
t
T

1/2 (8)

where: If U is chosen from the null space of X, X̃ is akin

to Fixed-X knockoffs. If Uj ∼ MVN(0, In), X̃ is akin

to Model-X second-order knockoff. Our numerical studies

showed that their performances are highly similar (Supple-

mentary Tab. S2), and in this paper we use the later for

numerical convenience. As a special case, when the columns

of X are uncorrelated, simple calculations show that X̃ = U.

This implies that for uncorrelated X, X̃ can be simulated

directly from either a standard normal distribution or the

basis of the null space of X.

Covariance between ReKo knockoffs
From ReKo knockoffs construction we can examine covari-

ance between different copies of ReKo knockoffs. Suppose

orginal feature matrix is X0, and knockoffs are Xj . Then

Xj can be expressed as Xj = M + Uj where M , a linear

combination of X0 and its column-wise Householder refle-

ction Y0, is a constant matrix with respect to j, and Uj

is scale and rotation of a matrix whose columns are stan-

dard multivariate normal. Simple calcuations using results

from Lemma 1 show that the expected covariance matrix

between Xj and Xk is

[
λΣ Σ− S

Σ− S λΣ

]
, where the postive

constant λ is strictly < 1. On the other hand, multiple kno-

ckoff proposed by Gimenez and Zou (2019) (henceforth GZ

knockoff), by definition, requires covariance between Xj and

Xk to be

[
Σ Σ− S

Σ− S Σ

]
. In other words, ReKo knockoff

produces less correlated knockoffs compared to GZ knockoffs,

and therefore has a higher statistical efficiency.

Shrinkage priors and data augmentation
In Lemma 1, computing Yj requires the least square fit of

the linear regression:

Xj = X,−jb−j + e (9)

to obtain b̂−j , which is then used to calculate Yj =

2X,−jb̂−j−Xj . When p is large compare to n, and/or there

exist highly correlated features, model (9) is prone to over-

fitting, which can adversely affect the performance of the

knockoff filter. While penalized regression is a good choice

to avoid overfitting, Bayesian regression offer a more elegant

solution in this context, as it serves two purposes.

Suppse we put priors on b−j such as

b−j ∼MVN(0, σ
2
I(p−1)), (10)

where MVN denotes multivariate normal distribution, Im is

the identity matrix of dimension m, and σ is the prior effect

size to be specified. The Bayesian estimated effect sizes are

given by

b̂−j =
(
X

t
,−jX,−j + σ

−2
I(p−1)

)−1
X

t
,−jXj . (11)

The same solution can be achieved via augmenting X with

ghost observations σ−1Ip such that X ← [Xt, σ−1I]t. A

natural choice for σ is σ2 = 1/p, as this prior ensures

the posterior distribution remains well behaved for large p.

That is, the posterior remain proper and without exces-

sive variance inflation. But empirical Bayes estimated σ (to

be discussed below) appears to perform better. This data

augmentation enables constructing reflection knockoffs for

X of any shape, as the augmented X will have dimension

(n+ p)× p and full rank p, which satisfies the conditions in

Lemma 1. By augmenting X with ghost observations, we can

extend this construction to handle cases where p > n.
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Empirical Bayes estimates of shrinkage priors
Consider a Bayesian linear regression for model (9) and

prior (10), we have

Xj = X,−jb + e

b ∼MNV (0, τ
−1

σ
2
)

e ∼MNV (0, τ
−1

In)

(12)

Integrate out b to obtain the marginal likelihood, and we get

Xj |X,−j , σ
2 ∼MNV (0, τ

−1
σ
2
jX,−jX

t
,−j + τ

−1
I). (13)

This is a special case of a linear mixed model and

we can obtain maximum likelihood estimate of σ2
j using

IDUL (Guan and Levy, 2024a). To proceed, we obtain

eigeindecomposition X,−jX
t
,−j = QjDjQ

t
j where Qj is

orthonormal and Dj is diagonal. We rotate the system by

multiplying (12) by Qt from left we get

X
′
j |X

′
,−j , σ

2 ∼MNV (0, τ
−1

σ
2
jDj + τ

−1
). (14)

For this particular application, we find that using a bisection

method is more stable than IDUL, particularly for smaller p.

In addition, a practical upper bound 1 can be imposed on σ2
j

to facilitate the bisection. Therefore, we used the bisection

method to find maximum likelihood estimate of σj .

We estimated σ2
j for each feature, which requires eigende-

composition of X,−jX
t
,−j for each j, and naive computation

can be expensive O(np3). Here we approximate eigenvectors

of X−jX
t
−j with eigenvectors of XXt, but update eigenva-

lues for each X−jX
t
−j . The rank one update for eigenvalue

requires one to solve secular equations, which can be solved

in a constant time (for updating a single eigenvalue) using

another bisection search method. The total complexity to

obtain eigenvalues for X−jX
t
−j using rank one update is

O(np + p2) (more details in Supplementary Section 1). For

eigen decomposition of XXt, we implemented randomized

singular value decomposition (rSVD) (Halko et al., 2011) to

efficiently compute (say 200) approximate leading eigenpairs,

and use them to compute empirical Bayes estimated priors.

After estimating σj for each j, we obtained Σ =

diag(σ1, . . . , σp). Instead of fitting Model (12) for each j,

which would be prohibitively slow, we augmented X with

Σ and compute reflection using Algorithm 1 detailed below.

This appears to maintain the performance and computation

efficiency. A comparison between data augmentation with

empirical Bayes estimated priors and those with fixed priors

can be found in Supplementary Fig. S1.

Computation
To speed up the computation and avoid repeatedly compu-

ting the matrix inverse needed for b̂−j in Equation (11), we

employ QR decomposition of X: X = QR, where Q is orth-

onormal n × p and R is a p × p upper triangular matrix.

Multiply both sides of the linear regression (9) by Qt, we

get Rj = R,−jb−j + eQ, where Rj is the jth column of R,

and R,−j is the matrix with its j-th column removed.

Efficient computation via Givens Rotation. The

matrix R,−j is close to being upper triangular and requires

at most (p− j) many Givens rotations to become triangular,

which can be done efficiently. A Givens rotation corresponds

to left-multiplying a sparse matrix, which we apply to both

sides of the regression. Importantly, this rotation is unitary

and does not affect mean and variance of the error term.

Once the matrix is properly triangularized, we use backward

substitution to solve the system for b̂−j . This value is then

used to compute R̃j and subsequently Yj .

Parallel Computing for Speed-Up. The algorithm

below outlines the steps, where the for loop can be paral-

lelized for efficiency. Our software implementation leverages

this feature for high-performance computation.

Algorithm 1 QR decomposition for Householder reflection

1: Input: A matrix X of n× p with full rank p.

2: Output: Y of n× p.

3: Augment X by appending Σp, update n← (n + p).

4: Perform QR decomposition to obtain X = QR.

5: for each column Rj of R do

6: Denote R,−j as matrix R with j-th column removed.

7: Do Givens rotation on R,−j to obtain an upper tri-

angular matrix U.

8: Do the same sequence of Givens rotation on Rj to

obtain feature V.

9: Solve V = Ub−j with backward substitution to get

b̂−j .

10: Compute R̃j = 2R,−jb̂−j−Rj , which is j-th column

of R̃.

11: end for

12: Compute Y = QR̃

13: return Y[1 : n, ]

Aggregation
We present a method for aggregating multiple knockoff stati-

stics. Let W = (W1, . . . ,Wp) represent the knockoff features

importance statistics from a single reflection knockoff. Under

the null, the distribution Wj is symmetric about zero,

ensuring FDR control. The knockoff threshold T for W ,

controlling the FDR at nominal level q is defined as:

T = min

{
t :

#{j : Wj ≤ −t}
#{j : Wj ≥ t} ∨ 1

≤ q

}
. (15)

Suppose we construct M copies of reflection knockoffs,

the m-th copy of the knockoff lead to the knockoff statistics

W (m) for m = 1, . . . ,M , which are identically distributed as

W . This assumes the same knockoff construction mechanism,

data, and model-fitting procedure, differing only by random

seeds or knockoff randomness. The following lemma establi-

shes the validity of aggregating these identically distributed

knockoff statistics.

Lemma 2. Let Wcat = (W (1), . . . ,W (M)), i.e., the poo-

led knockoff statistics from the M runs. If we apply the

standard knockoff threshold selection rule (15) to Wcat, the

resulting threshold Tcat also controls the FDR at level q.

Define the average knockoff statistic W̄j = 1
M

∑M
m=1 W

(m)
j .
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Selecting feature j such that W̄j > Tcat controls the FDR

at level q.

Proof For the m-th knockoff statistics W (m), the null fea-

tures are symmetrically distributed around zero and the

knockoff threshold selection (15) controls the FDR at level

q for W (m). Since W (m) for m = (1, . . . ,M) are identically

distributed, the combined set Wcat of size Mp is drawn from

the same underlying distribution as W . If the j-th feature

is a null feature, then W
(m)
j is symmetric about zero for all

m ∈ (1, . . . ,M). Conversely, if the j-th features is non-null,

then W
(m)
j > 0 for all m ∈ (1, . . . ,M). The two counts

in (15) have the same expectation for each j and for all t.

Thus, applying the knockoff threshold rule to Wcat yields a

threshold Tcat that controls FDR at level q.

For a null feature j, the distribution of W
(m)
j is sym-

metric about zero. Formally, the pair (W
(m)
j ,−W (m)

j ) is

identically distributed. This symmetry holds for each copy

of the knockoff. The average statistics W̄j preserves this

symmetry, ensuring that W̄j is symmetry about zero. The

super-martingale argument from the original FDR control

proof applies directly (supplementary material of Barber and

Candès, 2015). Under the null, features have no preference

for positive or negative deviations. Thus, selecting feature j

such that W̄j > Tcat controls the FDR at level q. □

Results

Reflection Knockoffs
A key observation leading to our invention of reflection

knockoffs is that the reflection of a feature Xj over the

hyperplane spanned by other features X,−j produces a Yj

that is an almost perfect knockoff for that feature. Such

Yj can be computed using Householder reflection. Indeed,

cov(Xj ,Yk) = cov(Xj ,Xk) for j ̸= k (Lemma 1 in Materi-

als and Methods), where cov denotes sample covariance. As a

candidate for knockoff of X, a linear combination of X and Y

has the correct sample covariances between different column

vectors, but not correct sample variances. The variance, how-

ever, can be fixed by adding a term that is uncorrelated with

columns of X and Y, and this is the essence of a formulation

provided by Barber and Candès (2015).

The Householder reflection regresses Xj on X,−j to

obtain a fitted value X̂j , then computes the reflection Yj =

2X̂j − Xj . The residual of regression is Zj = 1
2 (Xj − Yj).

Therefore Zj is orthogonal to X̂j and uncorrelated with all

other features. Thus, the sample covariance matrix T =

cov(X,Z), where Tjk = cov(Xj ,Zk), is a diagonal matrix

with T ≥ 0 (Materials and Methods). We define S = αT

and seek the largest α such that S satisfies the constraint

in Equation (2). The optimal α̂ = 2/Λ1, where Λ1 is the

leading eigenvalue of the sample covariance matrix C =

cov(ZT−1/2), where Cjk is the sample covariance between

j-th and k-th column of matrix ZT−1/2. The knockoffs can

be computed following Equation (8) in Materials and Meth-

ods. Notably, constructing reflection knockoffs requires no

optimization and is numerically stable.

For the knockoff to have power, we need S = α̂T to

be bounded away from 0. Let’s examine α̂ and T in turn.

Numerically cov(ZT−1/2) is similar to an identity matrix,

with diagonal entries equal to 1 and small off-diagonal

entries. By Lemma 1 we have var(Zj) = Tjj where var

denote sample variance. Since T > 0 is diagonal, we have

diag(cov(ZT−1/2)) = diag(Ip). The off-diagonal element

cov(ZT−1/2)jk is the sample correlation between residuals

Zj and Zk. Assuming cov(Xj ,Xk) = r, and that both are

uncorrelated with other features, a straightforward compu-

tation yields cov(Zj ,Zk) = r(r2 − 1). Therefore both large

(close to 1 or −1) and small (close to 0) correlations produce

small cov(Zj ,Zk). This calculation also applies when r is

the conditional correlation, which can be obtained from the

sample precision matrix cov(X)−1. When features are corre-

lated, the conditional correlation between two features tends

to be small. Then by the Gershgorin circle theorem, the eige-

nvalues satisfy |Λj − 1|≤
∑

k ̸=j |cov(ZT−1/2)jk|. So as long

as the off diagonal entries are small and linearly diminishing

with the dimension of cov(ZT−1/2), the leading eigenvalue

Λ1 will be small, and α̂ will be bounded away from 0.

By Tjj = var(Zj), for the reflection knockoff to have

power the size of residual Zj needs to be bounded away from

0. When features are highly correlated, however, var(Zj)

tends to be small, as Xj is well explained by X,−j . Intro-

ducing shrinkage priors via ghost samples (Materials and

Methods) proves to be an effective way to keep var(Zj) away

from 0. This is a rare example where both sides of the bias

and variance tradeoff are beneficial – we have more consi-

stent estimates of Z while keeping the size of Z away from 0.

Intuitively, when the mirror image is too close to the original

feature, the priors bend the mirror so that the image appe-

ars farther away in the mirror without introducing obvious

distortion. The ghost samples also enable reflection knockoffs

to be constructed when the number of features is larger than

the number of samples, significantly broadening the scope of

applications.

Combined knockoff filter
We designated a knockoff filter by how the knockoffs were

constructed, how the associations were analyzed (either

using statistical methods or software packages that imple-

ment them), and what feature importance measure was used.

For example, Model-X⊗glmnet⊗Beta means a knockoff fil-

ter that constructs Model-X knockoffs, uses glmnet (a R

package) to conduct joint association analysis, and choo-

ses the regression coefficient as the importance measure;

ReKo⊗fastBVSR⊗PIP means a knockoff filter that constru-

cts reflection knockoffs, performs association analysis using

fastBVSR, and uses PIP (posterior inclusion probability) as

the importance measure.

When comparing two knockoffs with everything else being

equal, we designate knockoff filters in a manner such as

⊗glment⊗Beta. Thus, by saying we are comparing Model-

X and ReKo based on ⊗glment⊗Beta, we mean compa-

ring power and type I errors between the knockoff filters

Model-X⊗glmnet⊗Beta and ReKo⊗glment⊗Beta. We may



6 Y. Guan and D. Levy

omit the importance measure from the notation of kno-

ckoff filters when it is clear from the context. For exam-

ple, ⊗glment means ⊗glment⊗Beta, and ⊗fastBVSR means

⊗fastBVSR⊗PIP.

A combined knockoff filter ⊗combined combines results

from knockoff filters ⊗glmnet and ⊗fastBVSR, such that a

feature is selected as positive by the combined filter if and

only if it is selected by both ⊗glmnet and ⊗fastBVSR. The

combined knockoff filter provides a means to combine results

from Frequentist and Bayesian inferences.

Aggregating multiple knockoff statistics
Due to random component in their construction, knockoffs

are inherently random. Consequently, inferences based on

a single knockoff statistics can be inconsistent. Generating

multiple knockoffs and combining multiple knockoff statistics

can effectively increase consistency and power of a knockoff

filter (Gimenez and Zou, 2019; He et al., 2021a). The exi-

sting methods that combine multiple knockoffs assume that

feature importance measures can be obtained for each copy

of knockoffs independently of the original features (He et al.,

2021a), while for our target applications, it is important to

jointly fit a model that contains both origin features and a

copy of their knockoffs. We developed a new method that

combines multiple sets of knockoff statistics (Material and

Method).

Our aggregating method concatenates multiple sets of

knockoff statistics to identify a knockoff threshold at a nomi-

nal FDR level, and calls positives by comparing average

knockoff statistics of each feature with the knockoff thre-

shold. Intuitively, concatenation increases the sample size

used to estimate thresholds and provides a more stable

empirical estimate of the distribution of null and non-null

features. Concatenation reduces variance in the estimation

of threshold-relevant ratios, making the threshold estima-

tion more stable while preserving the original FDR control.

Under the null hypothesis, if m-th knockoff statistic of j-th

feature W
(m)
j is symmetric around zero for each m, their ave-

rage W̄j remains symmetric around zero. Consequently, W̄j

retains the crucial null property necessary for FDR control.

Averaging also reduces the variance of knockoff statistics

for each feature, providing more stable and reproducible

feature selection while maintaining theoretical FDR gua-

rantees. Figure 1 provides an example to demonstrate that

aggregating multiple copies of knockoffs increases power. For

the numerical analysis conducted in this paper, all results

were obtained by aggregating 10 knockoff statistics, unless

otherwise noted.

Comparing ReKo with other knockoffs
We first compared ReKo with Fixed-X and Model-X kno-

ckoffs using synthetic features (Supplementary Tab. S2).

Building upon knowledge gained, we then focus on com-

paring ReKo with Model-X and KnockoffScreen (He et al.,

2021a) using synthetic features of various simulation para-

meters. These include high and low content of association

signals (Supplementary Fig. S2 and S3.), different levels

of feature correlations (Supplementary Fig. S4), and non-

normal feature distributions (Supplementary Fig. S5). With
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Fig. 1. Aggregating knockoff statistics improve power. Top panel

is nominal FDR vs power; Bottom panel is nominal FDR vs reali-

zed FDR. The knockoff filter used to call positives is ⊗glmnet for

all. Results of Model-X and ReKo were obtained by aggregating 10

copies of knockoff statistics. For KnockoffScreen, we produced results

by using a single copy of knockoff statistics and by aggregating 2, 4,

and 10 copies of knockoff statistics. The results are based on simulated

features with n = 2000 and p = 800. More details of simulation can

be found in Supplementary Section 2.

synthetic features, we observed that ReKo is on par or

slightly better than KnockoffScreen, and both are noticea-

bly outperform Model-X. Since synthetic feature may not

capture intricate correlation in the real datasets, we use real

features for comparison.

The first real dataset is a subset of 1459 proteomic featu-

res from 9914 UK Biobank samples. The largest correlation

between different features is 0.98. We simulated phenotypes

using 200 randomly selected features as drivers. Their effect

sizes were independently drawn from the standard normal

distribution, but rescaled so that the PVE, or Proportion of

Variance Explained, was 0.90. The large PVE used here was

motivated by the strong signals observed in real phenotypes.

Power and realized FDR were computed by pooling results

from 100 replicates. For each replicate, we aggregated kno-

ckoff statistics from 10 copies of knockoffs (independently

generated for each replicate) to call true and false positives

at nominal FDR levels ranging from 0.01 to 0.20.

Figure 2 presents the results, and we make the following

observations: 1) Model-X appears to be overly conservative
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Fig. 2. Power and realized FDR comparison between different kno-

ckoffs. The features are proteomics data from UK Biobank. . Different

line styles represent different knockoff filters and different colors repre-

sent different knockoff methods. The power and realized FDR were

computed from 100 replicates, and each replicate aggregates 10 kno-

ckoff statistics.

on the realized FDR, and its power suffers consequently.

2) Both ReKo and KnockoffScreen showed inflated reali-

zed FDR for knockoff filters ⊗glmnet and ⊗fastBVSR. With

⊗combined, however, both ReKo and KnockoffScreen have

their realized FDR under control. 3) ReKo performs on

par with KnockoffScreen, the slightly better power obse-

rved is likely due to ReKo’s slightly higher realized FDR

. 4) Knockoff filter ⊗fastBVSR appear to be more powerful

than ⊗glmnet. This is particularly true for Model-X, whose

realized FDRs are under control for both knockoff filters.

This echoes our prior studies (Guan and Stephens, 2011;

Qi et al., 2018) that demonstrated advantage of Bayesian

variable selection over panelized regression.

The second dataset of real features consists of genoty-

pes. And our goal is to investigate how high correlation

affects performance of knockoff filters. From a trio-phased

dataset (Guan et al., 2025) we extracted features of pater-

nal and maternal alleles from genomic region HLA-DQB1,

which is known for its strong and complex pattern of lin-

kage disequilibrium. We extracted three sets of features each

having a different threshold for highest correlation among

Nominal FDR0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
we

r

0.90
0.95
0.99

0.90
0.95
0.99

0.90
0.95
0.99

0.00 0.05 0.10 0.15 0.20
Nominal FDR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
al

ize
d 

FD
R

SuSiE KnockoffScreen ReKo

Fig. 3. Comparisons between SuSiE, KnockoffScreen⊗combined, and

ReKo⊗combined for different correlation threshold with features were

extracted from genomic region HLA-DQB1. Results of SuSiE in green;

Results of KnockoffScreen in blue; Results of ReKo in red. Different

line styles represent thresholds used to trim features.

features: 0.90, 0.95, and 0.99. This is achieved by pro-

gressively thinning features in such a way that if a pair of

features has a correlation that is higher than a threshold, we

randomly remove one feature. To simulate phenotypes we

randomly select 8 causal features, simulate each effect size

with standard normal but rescale the effect sizes so that the

PVE is 0.20. For each simulated phenotype, we independen-

tly generated knockoffs using Model-X, KnockoffScreen and

ReKo.

Since this simulation is designed to illustrate the applica-

tion of knockoff filters to study fine mapping, we compared

results with SuSiE (Wang et al., 2020), a Bayesian method

for fine mapping. We used its PIP outputs to call positives

for SuSiE: at a nominal FDR α, a feature is called positive

if its PIP is greater than 1− α.

Figure 3 summarizes the results for KnockoffScreen

⊗combined, ReKo⊗combined, and SuSiE. We make the fol-

lowing observations: 1) At correlation thresholds 0.90 and

0.95, both ReKo⊗combined and KnockoffScreen⊗combined

appear to have well-controlled type I error. 2) ReKo appe-

ars to have more power than KnockoffScreen, and at less

stringent nominal FDR, ReKo appears to have more power

than SuSiE. 3) At correlation 0.99 both ReKo⊗combined
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Fig. 4. Comparison of Model-X⊗glment (solid line), Model-X

⊗fastBVSR (dashed line), and Model-X⊗combined (dotted line) for

different correlation threshold (orange for correlation threshold of 0.90,

magenta for 0.95, and pink for 0.99) using the same features extra-

cted from HLA-DQB1. Results for SuSiE, KnockoffScreen⊗combined,

and ReKo⊗combined at the threshold of 0.90 were reproduced here

for comparison. The power and realized FDR were computed from 50

replicates, and each replicate aggregates 10 knockoff statistics.

and Knockoff⊗combined show inflated realized FDR. 4) As

the correlation threshold increases, the power of all methods

decreases. 5) SuSiE has almost flat realized FDR vs. nomi-

nal FDR, suggesting that the calibration of its PIP remains

challenging in real data analysis, an observation also made

by others (Cui et al., 2024). But its power increases with

nominal FDR, and at a more stringent nominal FDR, SuSiE

is more powerful than both ReKo and KnockoffScreen.

Figure 4 compares Model-X under different knockoff

filters using the same datasets. The first interesting obse-

rvation is that at correlation 0.99, Model-X shows infla-

ted realized FDR, a phenomenon not seen with proteomic

features (Figure 2) and synthetic features (Supplementary

Fig. S3 and Fig. S4). The second observation is that

Model-X⊗fastBVSR is more powerful than Model-X⊗glment

and ⊗combined, an observation we made with proteo-

mic features (Figure 2). We therefore use knockoff filters

Model-X⊗fastBVSR, KnockoffScreen⊗combined, and ReKo

⊗combined for real data analysis.

Proteomic association with age
Proteomic signatures of age are an important focus of prote-

omics and aging studies (Tanaka et al., 2018; Lehallier et al.,

2019; Tanaka et al., 2020; Sun et al., 2023). In a recent UK

Biobank study using the Olink Explore platform, 1, 944 pro-

teins out of 2, 923 analyzed were significantly associated with

age (Sun et al., 2023). Since protein features are highly cor-

related, a natural question is how many of these features are

drivers and how many are hitchhikers. A driver association

remains significant when conditioned on other associated fea-

tures, while a hitchhiker does not. Thus this question can

only be addressed by jointly analyzing all features and can-

not be answered by single feature tests. Knockoff filter is

a framework to select (driver) features while keeping FDR

under control. For the knockoff filter to work, however, it is

important to construct knockoffs with high power, and the

ReKo is designed for this requirement.

Using a subset of proteomic features from UK Bio-

bank (Sun et al., 2023), we investigated how many proteomic

features are drivers in their association with age. We first

computed the realized kinship matrix for 14, 752 samples

based on genotype data using Kindred (Guan and Levy,

2024b). Then we regressed out fixed effects (sex and BMI)

and the random effect, whose covariance matrix is a linear

scaling of the kinship, from age (the phenotype) and each of

the 1, 459 proteomic features using IDUL (Guan and Levy,

2024a). The residuals of age and the proteomic features were

used for further analysis. We first examined the marginal

association. At a p-value threshold of 3× 10−5, set by Bon-

ferroni correction, there were 902 out of 1, 459 (or 62% )

proteomic features significantly associated with age. This

proportion aligns with a previous report of 1, 944 out of 2, 923

(or 67%) (Sun et al., 2023).

We applied three knockoff filters to call positives at nomi-

nal FDR levels of 0.05 and 0.10. These knockoff filters include

Model-X⊗fastBVSR, KnockoffScreen⊗combined, and ReKo

⊗combined. For each knockoff filter, we aggregated 10 sets of

knockoff statistics to call positives (Materials and Methods).

(The counts of positives called with a single set of knockoff

statistics can be found in Supplementary Tab. S3.) Table 1

summarizes the results. At a nominal FDR of 0.05 Model-X

⊗fastBVSR called 256 positives (or 16.9% of total number of

features), KnockoffScreen⊗combined called 306 (or 21.0%),

ReKo⊗combined called 309 (or 21.2%). At a nominal FDR

of 0.10 Model-X⊗fastBVSR called 308 (or 19.9%), Knockoff-

Scree⊗combined called 361 (or 24.7%), ReKo⊗combined

called 371 (or 25.4%).

Level MX KS ReKo Overlap

0.05 256 306 309 291 (90%)

0.10 308 361 371 345 (89%)

Table 1. Counts of significant association for proteomic data.

Column MX contains results from Model-X⊗fastBVSR; Column

KS contains results from KnockoffScreen⊗combined; Column

ReKo contains results from ReKo⊗combined. Denote SK and SR

positive calls by KnockoffScreen⊗combined and ReKo⊗combined

respectively, Column Overlap contains counts of intersect betw-

een SK and SR, and the ratios in the parenthesis are Jaccard

similarity coefficient.
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At nominal FDR level of 0.05 the number of overlapping

positives between KnockoffScreen and ReKo is 291, the num-

ber of positives called by either KnockoffScreen or ReKo is

324, and the ratio between counts of intersection and union,

known as Jaccard similarity coefficient, is 90%. At nominal

FDR level of 0.10 the counts of intersection and union betw-

een positives called by KnockoffScreen and ReKo are 345 and

387, and the Jaccard similarity coefficient is 89%. The high

Jaccard similarity coefficients signal consistency of positive

calls between KnockoffScreen and ReKo. We thus conclude

that the majority of proteomic features that show significant

association with age in a single feature test are hitchhikers

rather than drivers.

Genetic fine mapping
Genome-wide association studies (GWAS) and expression

quantitative trait loci (eQTL) analysis are effective at iden-

tifying genomic regions associated with phenotypes. Due to

linkage disequilibrium, however, pinpointing the exact driver

variants within these regions is challenging. Fine mapping

methods (Hormozdiari et al., 2014; Benner et al., 2016; Wang

et al., 2020) aim to distinguish the driver variants from

hitchhiker variants whose association with the phenotype

diminishes once conditioned on driver variants. Among cur-

rent fine mapping methods SuSiE (Wang et al., 2020) is an

elegant Bayesian regression approach that models multiple

driver variants within genomic regions. Here we demonstrate

that knockoff filters can be applied to tackle fine mapping.

In a recent study, we discovered abundant genes har-

boring eQTL (eGene) that have parent-of-origin effect

(POE) (Guan et al., 2025). When a eGene harbors both

genotype eQTL and POE eQTL, one may wonder whether

POE eQTL are driver signals. Fine mapping can help distin-

guish drivers from hitchhikers. A challenge in this analysis,

however, is that collinearity is introduced into features when

genotypes are separated into paternal and maternal alleles.

We therefore removed genotypes and only use paternal and

maternal alleles in fine mapping. Removing genotypes still

allows us to distinguish between POE eQTL and genotype

eQTL, because paternal and maternal alleles tend to have

similar effects in the absence of POE.

We selected five example eGenes from the POE eQTL

study to perform fine mapping. The selections include

PPIEL and GJB6 that harbor both genotype eQTL

and POE eQTL, CCR9 that harbors exclusively paternal

eQTL, COA8 that harbors exclusively maternal eQTL, and

NECAB3 that harbors opposing eQTL, whose paternal and

maternal alleles having their effect sizes in opposite directi-

ons. For each eGene, we regressed out fixed effects including

age, sex, BMI, and cell type composition, and random effects

that account for relatedness using IDUL (Guan and Levy,

2024a). A consecutive genomic region in cis to the eGe-

nes was visually identified by examining the eQTL peak for

each selected eGene. Features in the genomic region were

then trimmed such that the largest correlations among the

remaining features did not exceed 0.90. If a pair of features

displayed a correlation larger than 0.90, we kept the one with

stronger marginal association. The trimming was conducted

using genotypes, and in our analysis paternal and maternal

alleles always present in pairs.

We performed fine mapping with the five sele-

cted eGene using four methods: three knockoff filters

Model-X⊗fastBVSR, KnockoffScreen⊗combined, and ReKo

⊗combined, and SuSiE. Table 2 summarizes the results and

from which we make the following observations: 1) Accor-

ding to a recent study (Guan et al., 2025), which applies

to all five selected eGenes, PPIEL has both genotype eQTL

and paternal eQTL. All four methods identified two pater-

nal alleles as drivers. 2) GJB6 has both genotype eQTL and

maternal eQTL. Both paternal and maternal alleles of SNP

rs12875121 were found to be significant by all three kno-

ckoff methods. SuSiE missed the positive call of maternal

allele by 0.01. This SNP is indeed a genotype eQTL. 3) ReKo

called two additional maternal eQTL significant for GJB6,

but Model-X, KnockoffScreen, and SuSiE did not. Regres-

sion analysis show that paternal and maternal alleles of SNP

rs12875121 alone had adjusted R-squared value of 0.081,

and adding these two maternal eQTL the adjusted R-squared

value increased to 0.103. This suggests that the two mater-

nal maternal eQTL are likely true positives. Their marginal

test Bayes factors appear to support that they are likely true

positives (Supplementary Tab. S4). 4) CCR9 harbors exclu-

sively paternal eQTL, and all four methods call a paternal

eQTL positive. 5) COA8 provides another example where all

three knockoff filters called positive, but the SuSiE missed

by a small margin. 6) NECAB harbors exclusively opposing

eQTL; all four methods reported significant maternal eQTL

without its companion paternal eQTL.

Discussion

In this paper, we presented a novel method to construct kno-

ckoffs via Householder reflection and demonstrated the power

it brings to knockoff filters. We provided a simple method

to aggregate multiple sets of identically distributed knockoff

statistics to improve the consistency of knockoff filters. We

also demonstrated that a combined knockoff filter, by combi-

ning Bayesian and Frequentist inference, can effectively bring

the realized FDR under control when correlation is not extre-

mely high. ReKo assumes feature matrix is fixed and known.

In this sense, ReKo works within the framework of Fixed-X

but provides a novel way to estimate S in Equation 1. Our

current work, however, provides no theoretical guarantee of

FDR control under arbitrary covariance structure.

We applied reflection knockoffs to address two problems

that involve highly correlated features. In the analysis of

proteomic signatures of age using knockoff filters, we demon-

strated that the majority of proteins showing significance in

single-feature tests are hitchhikers, not drivers. In the analy-

sis of genetic fine mapping, we demonstrated that ReKo can

reliably make positive calls that are consistent with Model-

X and KnockoffScreen. Two extra positive calls by ReKo

alone were supported by high SuSiE PIPs. ReKo is compu-

tationally efficient, particularly when rSVD approximation

is invoked. We documented the computational time required

to generate knockoffs and to fit models for different knockoff

filters in Supplementary Section 10.
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eGene eQTL MX KS ReKo SuSiE Call

PPIEL
rs79473113:C:A:1:39554348:1 1.00 1.00 1.00 1.00 1111

rs7520271:A:C:1:39579041:1 0.80 0.82 0.87 0.97 1111

GJB6

rs12875121:T:C:13:20478719:1 0.95 0.97 0.98 0.99 1111

rs12875121:T:C:13:20478719:0 0.76 0.78 0.79 0.89 1110

rs9506450:G:C:13:20239478:0 -0.15 -0.27 0.61 0.44 0010

rs9579911:C:G:13:20637437:0 0.23 0.26 0.38 0.20 0010

CCR9 rs9814578:T:G:3:45821775:1 0.85 0.93 0.98 0.98 1111

COA8 rs10143623:G:A:14:103720539:0 0.66 0.58 0.85 0.87 1110

NECAB3 rs2626556:A:G:20:33768509:0 0.79 0.80 0.88 0.95 1111

Table 2. Fine mapping of selected eGenes. MX: Model-X; KS: KnockoffScreen. Column eQTL contain variants information in the

format of rs:ref:alt:chr:pos:pm where pm can be 1 for paternal alleles, and 0 for maternal alleles. Columns MX, KS, and ReKo contain

average knockoff statistics from knockoff filter ⊗fastBVSR, aggregated from 10 replicates of knockoffs respectively. Column SuSiE

contains PIP from SuSiE. Column Call contain four binary digits with 1 for positive call and 0 for negative call. From left to right

the first digit is for Model-X⊗fastBVSR, the second digit is for KnockoffScreen⊗combined, the third is for ReKo⊗combined, and the

fourth digit is for SuSiE. The nominal FDR used to call positives is 0.10.

In both simulated features and real datasets, ReKo

improves the power of different knockoff filters. We beli-

eve ReKo can be beneficial to other knockoff-based meth-

ods, such as those developed for genetic association stu-

dies (Candès et al., 2018; He et al., 2021b). In Figure 1, we

demonstrate that the aggregation helps KnockoffScreen (He

et al., 2021a). We believe our method of aggregating multi-

ple sets of identically distributed knockoff statistics can also

benefit knockoffs constructed by other methods, including

hidden Markov model knockoffs (Sesia et al., 2019), Kno-

ckoffZoom (Sesia et al., 2020), and GhostKnockoffs (He et al.,

2022).

We used empirical Bayes estimated shrinkage priors to

combat high correlation when constructing reflection kno-

ckoffs, an alternative approach is to use weighted regression

in Equation (9) to down-weight covariates in X−j that are

highly correlated with Xj . This is equivalent to putting a

different prior on b−j for different j. A natural prior for

this purpose would be the partial correlation taken from

cov(X)−1. We would still need a separate shrinkage prior

to control the overall shrinkage (similar to the λ in LASSO),

which could be determined empirically, for example, using

cross-validation. This can be a fruitful future research topic

to further improve reflection knockoffs.

Trimming highly correlated features was used in the

current study to reduce high correlation in the data. As cur-

rently implemented, the trimming procedure aimed to keep

features with more significant marginal association. There is

certainly room for improvement, such as fitting models join-

tly to rank features, and using the ranks to inform feature

trimming. Compared to trimming, it may be more fruitful

to cluster highly correlated features, as implemented in (He

et al., 2021a), or to perturb highly correlated features with

carefully designed noises. This can be another fruitful future

research topic to improve reflection knockoffs.

A clever approach to reduce high correlation in fine

mapping is to pool genetic data from multiple ancestral

backgrounds (Yuan et al., 2024; Cai et al., 2023). This pra-

ctice takes advantage of different patterns of LD in different

ancestral backgrounds to reduce correlation among genetic

markers, which evidently increases power for fine mapping.

Knockoff filters can also benefit from pooling genetic data

from multiple ancestral backgrounds.

A Bayesian procedure such as fastBVSR may produce

PIPs that are not calibrated due to, say, difficulties in

estimating priors odds in applications involving highly cor-

related features. Our study suggests that knockoff filters

can indeed improve calibration of PIP by recalibrating it.

Similar to computing p-values for Bayes factors (Zhou and

Guan, 2018), using a knockoff filter – an intrinsic Frequen-

tist procedure – with PIP as the importance measure can

be perceived as another example of Bayesian / non-Bayesian

compromise (Good, 1992). Another notable benefit of the

knockoff filter is its ability to combine multiple knockoff

filters, such as ⊗fastBVSR and ⊗glmnet, to improve calibra-

tion of the realized FDR. The combined knockoff filter can

also be perceived as an example of Bayesian / non-Bayesian

compromise.

Both knockoff filters ReKo⊗glmnet⊗Beta and ReKo

⊗fastBVSR⊗PIP produced inflated realized FDR when fea-

tures were highly correlated. The combined knockoff filter

appeared to be effective in controlling the realized FDR when

the correlation is not extremely high. The intuition behind

this is as follows: Suppose there are four highly correlated

features such that conditioning on any one of these featu-

res, the other three features become uncorrelated with the

phenotype. One of the features is selected as a driver in simu-

lation. Penalized regression will arbitrarily pick one feature

among the four and call it a positive, while the other three

are declared negative. In contrast, fastBVSR, by the virtue of

model averaging, will assign each feature a PIP of about 0.25.

If the knockoff threshold happens to be 0.20, then fastBVSR

will produce three false positives, compare to at most one for

penalized regression. On the other hand, suppose these four

features are null features, only associated with the phenotype

via hitchhiking. The model averaging of fastBVSR will make

it less likely to produce false positives among these four fea-

tures compared to glmnet. The combined filter will reduce

false positive in both scenarios.

One potential application of reflection knockoffs is data

sharing for genetic research. By design, knockoffs ensure

that the original genetic data cannot be reverse-engineered,
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thanks to their reliance on random processes and the inh-

erently one-way nature of the construction method. Even

with complete knowledge of the algorithm and access to the

knockoff data, recovering the original data is mathematically

infeasible. This opens a transformative pathway for sharing

sensitive genetic or proteomic data while meeting stringent

privacy and regulatory standards, such as HIPAA. Imagine a

collaborative research ecosystem where scientists worldwide

can freely access anonymized knockoff datasets to address

critical challenges like fine mapping. This mirrors the ethos

of the machine learning field, where shared data fuels inno-

vation: the data are there, the goals are clear – innovate with

dare! With reflection knockoffs, genetic research can embrace

this model, empowering the community to collectively tackle

the most pressing problems with creativity and bravery.

Data availability

This study analyzed existing datasets from public domain

and simulated datasets. Data from the UK Biobank can

be obtained from https://www.ukbiobank.ac.uk/, and those

from Framingham Heart Study via dbGaP Study Acces-

sion: phs000007.v34.p15. Methods for generating simulated

datasets can be found in Supplementary Material. The sof-

tware for ReKo and its source code are freely available at

https://github.com/haplotype/ReKo.
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